Elizabeth A. Berger
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth A. Berger.
PLOS Pathogens | 2013
Elizabeth A. Berger; Sharon A. McClellan; Kerry Vistisen; Linda D. Hazlett
Hypoxia-inducible factor (HIF)-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals) mice after ocular infection with Pseudomonas (P.) aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN), the predominant cell infiltrate in keratitis. Using both siRNA and an antagonist (17-DMAG), the role of HIF-1α was assessed in P. aeruginosa-infected BALB/c mice. Clinical score and slit lamp photography indicated HIF-1α inhibition exacerbated disease and corneal destruction. Real time RT-PCR, immunohistochemistry, ELISA, Greiss and MPO assays, bacterial load, intracellular killing, phagocytosis and apoptosis assays further tested the regulatory role of HIF-1α. Despite increased pro-inflammatory cytokine expression and increased MPO levels after knocking down HIF-1α expression, in vivo studies revealed a decrease in NO production and higher bacterial load. In vitro studies using PMN provided evidence that although inhibition of HIF-1α did not affect phagocytosis, both bacterial killing and apoptosis were significantly affected, as was production of antimicrobial peptides. Overall, data provide evidence that inhibition of HIF-1α converts a normally resistant disease response to susceptible (corneal thinning and perforation) after induction of bacterial keratitis. Although this inhibition does not appear to affect PMN transmigration or phagocytosis, both in vivo and in vitro approaches indicate that the transcriptional factor is essential for effective bacterial killing, apoptosis and antimicrobial peptide production.
Journal of Immunology | 2013
Megan E. Foldenauer; Sharon A. McClellan; Elizabeth A. Berger; Linda D. Hazlett
IL-10 is important in the resistance response of BALB/c mice to experimental Pseudomonas aeruginosa corneal infection. However, the cellular mechanisms by which this anti-inflammatory cytokine is regulated remain unknown. Because the mammalian target of rapamycin (mTOR) regulates IL-10 in other disease models, the present study tested its role in bacterial keratitis. After infection, corneas of rapamycin versus control-treated BALB/c mice showed worsened disease, and real-time RT-PCR confirmed that mTOR mRNA levels were significantly decreased. Rapamycin treatment also increased clinical score, polymorphonuclear neutrophil (PMN) infiltration (determined by myeloperoxidase assay), and bacterial load, but it diminished PMN bactericidal activity. Inhibition of mTOR also led to elevated mRNA and protein levels of IL-12p40, matrix metalloproteinase 9, and inducible NO synthase, whereas mRNA and protein levels of IL-10, its regulator/effector STAT-3, and suppressor of cytokine signaling 3 (a proinflammatory cytokine regulator) were decreased. Furthermore, mTOR inhibition reduced levels of proapoptotic caspase-3 and increased levels of B cell lymphoma-2 (antiapoptotic), indicative of delayed apoptosis. mTOR inhibition also altered genes related to TLR signaling, including elevation of TLR4, TLR5, and IL-1R1, with decreases in IL-1R-associated kinase 1 and an inhibitor of NF-κB, NF-κB inhibitor–like 1. Rapamycin treatment also increased levels of IFN-γ and CCAAT/enhancer binding protein, β, a gene that regulates expression of preprotachykinin-A (the precursor of substance P). Collectively, these data, as well as a rescue experiment using rIL-10 together with rapamycin, which decreased PMN in cornea, provide concrete evidence that mTOR regulates IL-10 in P. aeruginosa–induced bacterial keratitis and is critical to balancing pro- and anti-inflammatory events, resulting in better disease outcome.
Investigative Ophthalmology & Visual Science | 2011
Xiaoyu Jiang; Sharon A. McClellan; Ronald P. Barrett; Elizabeth A. Berger; Yunfan Zhang; Linda D. Hazlett
PURPOSE Vasoactive intestinal peptide (VIP) is an anti-inflammatory neuropeptide that downregulates proinflammatory cytokines and promotes healing in a susceptible model of P. aeruginosa keratitis. Growth factors also play a role in corneal healing and restoration of tissue homeostasis after wounding. However, whether VIP treatment modulates growth factors to promote healing in the infected cornea remains untested and is the purpose of this study. METHODS C57BL/6 (B6) mice were injected with VIP and mRNA and protein levels, and immunostaining for EGF, FGF, HGF, and VEGF-A were done. Exogenous treatment with a mixture of the growth factors also was tested and levels of cytokines, defensins, and bacterial counts were determined. RESULTS Real-time RT-PCR, immunostaining, and ELISA data demonstrated that treatment with VIP enhanced levels of EGF, FGF, and HGF during disease, and that VEGF-A, and associated angiogenic molecules also were increased by VIP. Moreover, immunohistochemical studies confirmed that both epithelial and stromal cells participated in growth factor production. Most notably, treatment with a mixture of EGF, FGF, and HGF after disease onset, prevented corneal perforation when compared with controls. This outcome was associated with downregulation of proinflammatory cytokines such as macrophage inflammatory protein-2 (MIP-2), upregulation of anti-inflammatory cytokines such as TGF-β, and antimicrobials β-defensins 2 and 3, as well as decreased plate counts at 1 day postinfection (p.i.) (P = 0.0001). CONCLUSIONS Collectively, the data provide evidence that VIP treatment modulates growth factors, angiogenic molecules, and defensins in the infected cornea and that this in turn promotes healing and restoration of tissue homeostasis.
Immunology and Cell Biology | 2016
Elizabeth A. Berger; Thomas W. Carion; Youde Jiang; Li Liu; Adam Chahine; Robert J. Walker; Jena J. Steinle
Diabetic retinopathy has recently become associated with complications similar to chronic inflammatory diseases. Although it is clear that tumor necrosis factor‐α is increased in diabetes, the role of innate immunity is only recently being investigated. As such, we hypothesized that diabetes would increase Toll‐like receptor 4 (TLR4) signaling, which could be inhibited by a β‐adrenergic receptor agonist (Compound 49b) previously shown to have anti‐inflammatory actions. In order to investigate β‐adrenergic receptor signaling and TLR4 in the diabetic retina, streptozotocin‐injected diabetic mice, as well as human primary retinal endothelial cells (RECs) and rat retinal Müller cells (rMC‐1) exposed to high glucose (25 mm), were treated with a novel β‐adrenergic receptor agonist, Compound 49b (50 nm), or phosphate‐buffered saline (control). TLR4 and its downstream signaling partners (MyD88, IL‐1 receptor‐associated kinase 1, TNF receptor‐associated factor 6 and total and phosphorylated nuclear factor‐κB) were examined. In addition, we assessed high‐mobility group box 1 (HMGB1) protein levels. Our data showed that diabetes or high‐glucose culture conditions significantly increased TLR4 and downstream signaling partners. Compound 49b was able to significantly reduce TLR4 and related molecules in the diabetic animal and retinal cells. HMGB1 was significantly increased in RECs and Müller cells grown in high‐glucose culture conditions, which was subsequently reduced with Compound 49b treatment. Our findings suggest that high glucose may increase HMGB1 levels that lead to increased TLR4 signaling. Compound 49b significantly inhibited this pathway, providing a potential mechanism for its protective actions.
Investigative Ophthalmology & Visual Science | 2010
Elizabeth A. Berger; Sharon A. McClellan; Ronald P. Barrett; Linda D. Hazlett
PURPOSE This study tested the hypothesis that the neuropeptide vasoactive intestinal peptide (VIP) regulates adhesion molecule expression, reduces inflammatory cell migration and infiltration into the Pseudomonas aeruginosa-infected cornea of susceptible B6 mice, and promotes corneal healing and resistance. METHODS B6 mice received daily intraperitoneal (IP) injections of VIP from -1 through 5 days after infection. Control mice were similarly injected with sterile phosphate-buffered saline (PBS). Transcript levels of adhesion molecules were determined by PCR array, then select molecules were tested individually by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and confirmed at the protein level by enzyme-linked immunosorbent assay (ELISA) or immunofluorescent staining with confocal laser scanning microscopy at various time points after infection to assess the effects of VIP treatment in the regulation of adhesion molecule expression. RESULTS Injection of B6 mice with VIP compared with PBS resulted in significant downregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, platelet-endothelial cell adhesion molecule-1, and P-selectin and L-selectin mRNA expression. Protein levels for ICAM-1 and VCAM-1, detected by ELISA, supported the mRNA data at similar time points. Immunofluorescence staining further confirmed the effects of VIP treatment, showing reduced corneal expression of ICAM-1/leukocyte function-associated antigen (LFA-1) and VCAM-1/very late antigen-4 (VLA-4) at select time points compared with PBS-treated animals. CONCLUSIONS VIP treatment downregulates the production of adhesion molecules integral to the transmigration process of host inflammatory cells (polymorphonuclear neutrophils, macrophages) into the infected cornea. This results directly in reduced cellular infiltration, less stromal destruction, and better disease outcome.
Investigative Ophthalmology & Visual Science | 2015
Thomas W. Carion; Cody McWhirter; Daiyajot K. Grewal; Elizabeth A. Berger
PURPOSE Previous studies have demonstrated the efficacy of vasoactive intestinal peptide (VIP) treatment in regulating inflammation following bacterial keratitis induced by the P. aeruginosa strain 19660. However, in the current study we assessed whether disease outcome is specific to 19660 or if VIP treatment is effective against multiple P. aeruginosa strains. METHODS B6 mice received daily IP injections of VIP from -1 through 5 days post injection (p.i.). Control mice were similarly injected with PBS. Corneal infection was induced using PA 19660, PAO1 or KEI 1025. Disease response was documented and bacterial plate counts and myeloperoxidase assays were performed. Expression of select inflammatory mediators as well as enzymes associated with lipid mediator production was assessed after VIP treatment. KEI 1025 was characterized by cytotoxicity and invasion assays and then confirmed for ExoS/ExoU expression. RESULTS VIP treatment converted the susceptible response to resistant for the three P. aeruginosa strains tested. Disease response was significantly reduced with no corneal perforation. Anti-inflammatory mediators were enhanced after VIP treatment, while pro-inflammatory molecules were reduced compared to controls. Furthermore, VIP reduced inflammatory cell persistence in the cornea after infection with each of the P. aeruginosa strains. CONCLUSIONS VIP treatment is effective at ameliorating disease pathogenesis for multiple P. aeruginosa strains, both cytotoxic and invasive. This study is also the first to indicate a possible role for VIP regarding lipid mediator expression in the eye. In addition, the clinical isolate, KEI 1025, was characterized as an invasive strain. Overall, this study strengthens the preclinical development of VIP as a therapeutic agent for ocular infectious disease.
Investigative Ophthalmology & Visual Science | 2012
Elizabeth A. Berger; Kerry Vistisen; Ronald P. Barrett; Linda D. Hazlett
PURPOSE Studies from our laboratory have demonstrated that vasoactive intestinal peptide (VIP) directly converts the normally susceptible C57BL/6J (B6) mouse to resistant after ocular infection through modulation of the inflammatory response. This study examines mechanisms by which VIP influences the healing phase following infection--specifically reconstitution of the extracellular matrix (ECM). METHODS B6 mice received daily intraperitoneal (IP) injections of VIP, while control mice were similarly injected with sterile phosphate buffered saline (PBS). Real-time RT-PCR, ELISA, and immunofluorescent staining were used to assess the effects of VIP treatment on ECM molecule expression after Pseudomonas aeruginosa-induced keratitis. We also compared the effect of VIP treatment on lipopolysaccharide (LPS)-stimulated B6- and BALB/c-derived fibroblasts. RESULTS In vivo analyses revealed that VIP treatment of P. aeruginosa-infected B6 corneas led to a significant increase in ECM molecules associated with healing/homeostasis, while those associated with ECM degradation were significantly down-regulated when compared to wild-type (WT) controls. In vitro studies revealed that VIP treatment of lipopolysaccharide-stimulated fibroblasts derived from susceptible B6 and resistant BALB/c mice expressed distinct differences in ECM molecule expression, whereby the latter expressed higher levels of ECM molecules aimed at reconstitution. Furthermore, differential expression of VIP receptor-1/VIP receptor-2 (VIPR1/VIPR2) was observed between B6 and BALB/c after VIP treatment of LPS-stimulated fibroblasts. CONCLUSIONS VIP treatment functions to enhance ECM reconstitution, which appears to be carried out in large part by fibroblasts via VIPR2. Overall, the data from this study suggest that VIP not only regulates disease pathogenesis, but also functions to restore integrity of the corneal stroma.
Investigative Ophthalmology & Visual Science | 2016
Chithra Muraleedharan; Sharon A. McClellan; Ronald P. Barrett; Cui Li; Daniel Montenegro; Thomas W. Carion; Elizabeth A. Berger; Linda D. Hazlett; Shunbin Xu
PURPOSE The microRNA-183/96/182 cluster (miR-183/96/182) plays important roles in sensory organs. Because the cornea is replete with sensory innervation, we hypothesized that miR-183/96/182 modulates the corneal response to bacterial infection through regulation of neuroimmune interactions. METHODS Eight-week-old miR-183/96/182 knockout (ko) mice and their wild-type littermates (wt) were used. The central cornea of anesthetized mice was scarred and infected with Pseudomonas aeruginosa (PA), strain 19660. Corneal disease was graded at 1, 3, and 5 days postinfection (dpi). Corneal RNA was harvested for quantitative RT-PCR. Polymorphonuclear neutrophils (PMN) were enumerated by myeloperoxidase assays; the number of viable bacteria was determined by plate counts, and ELISA assays were performed to determine cytokine protein levels. A macrophage (Mϕ) cell line and elicited peritoneal PMN were used for in vitro functional assays. RESULTS MicroRNA-183/96/182 is expressed in the cornea, and in Mϕ and PMN of both mice and humans. Inactivation of miR-183/96/182 resulted in decreased corneal nerve density compared with wt mice. Overexpression of miR-183/96/182 in Mϕ decreased, whereas knockdown or inactivation of miR-183/96/182 in Mϕ and PMN increased their capacity for phagocytosis and intracellular killing of PA. In PA-infected corneas, ko mice showed decreased proinflammatory neuropeptides such as substance P and chemoattractant molecules, MIP-2, MCP1, and ICAM1; decreased number of PMN at 1 and 5 dpi; increased viable bacterial load at 1 dpi, but decreased at 5 dpi; and markedly decreased corneal disease. CONCLUSIONS MicroRNA-183/96/182 modulates the corneal response to bacterial infection through its regulation of corneal innervation and innate immunity.
The FASEB Journal | 2018
Thomas W. Carion; Matthew Greenwood; Abdul Shukkur Ebrahim; Andrew Jerome; Susmit Suvas; Karsten Gronert; Elizabeth A. Berger
Although autacoids primarily derived from the cyclooxygenase‐2 and 5‐lipoxygenase (LOX) pathways are essential mediators of inflammation, endogenous specialized proresolving mediators (SPMs) act as robust agonists of resolution. SPM biosynthesis is initiated by the conversion of arachidonic acid, eicosa‐pentaenoic acid, and docosahexaenoic acid primarily via the 12/15‐LOX pathway. Although 12/15‐LOX activity is prominent in the cornea, the role of SPM pathway activation during infection remains largely unknown and is the focus of the current study. Pseudomonas keratitis was induced in resistant BALB/c and susceptible C57BL/6 (B6) mice. Biosynthetic pathways for proinflammatory autacoids and SPMs were assessed. Divergent lipid mediator profiles demonstrate the importance of 15‐LOX pathways in the pathogenesis of ocular infectious disease. Results indicate that an imbalance of LOX enzymatic pathways contributes to susceptibility observed in B6 mice where deficient activation of SPM circuits, as indicated by reduced 15‐hydroxy‐eicosatetraenoic acid and 17‐hydroxydocosahexaenoic acid levels, prevented transition toward resolution and led to chronic inflammation. In sharp contrast, BALB/c mice demonstrated a well‐balanced axis of 5‐LOX/12‐LOX/15‐LOX pathways, resulting in sufficient proresolving bioactive metabolite formation and immune homeostasis. Furthermore, a novel immunoregulatory role for 15‐LOX was revealed in inflammatory cells (polymorphonuclear leukocytes and macrophages), which influenced phagocytic activity. These data provide evidence that SPM circuits are essential for host defense during bacterial keratitis.—Carion, T.W., Greenwood, M., Ebrahim, A. S., Jerome, A., Suvas, S., Gronert, K., Berger, E. A. Immunoregulatory role of 15‐lipoxygenase in the pathogenesis of bacterial keratitis. FASEB J. 32, 5026–5038 (2018). www.fasebj.org
Prostaglandins & Other Lipid Mediators | 2016
Haoshen Shi; Thomas W. Carion; Youde Jiang; Jena J. Steinle; Elizabeth A. Berger
PURPOSE The purpose of our study was to evaluate the therapeutic effect of VIP on human retinal endothelial cells (HREC) under high glucose conditions. Diabetes affects almost 250 million people worldwide. Over 40% of diabetics are expected to develop diabetic retinopathy, which remains the leading cause of visual impairment/blindness. Currently, treatment is limited to late stages of retinopathy with no options available for early stages. To this end, the purpose of the current study is to evaluate the therapeutic effect of vasoactive intestinal peptide (VIP) on HREC under high glucose conditions. METHODS Primary HREC were cultured in normal (5mM) or high (25mM) glucose medium +/- VIP treatment. Protein levels of TNF-α, resolvin D1 (RvD1), formyl peptide receptor 2 (FPR2), G protein-coupled receptor 32 (GPR32), VEGF, and VIP receptors, VPAC1 and VPAC2 were measured. RESULTS High glucose-induced changes in TNF-α and RvD1 were restored to control levels with VIP treatment. RvD1 receptors, ALX/FPR2 and GPR32, were partially rescued with VIP treatment. VPAC2 expression appeared to be the major receptor involved in VIP signaling in HREC, as VPAC1 receptor was not detected. In addition, VIP did not induce HREC secretion of VEGF under high glucose conditions. CONCLUSIONS Our results demonstrate that VIPs therapeutic effect on HREC, occurs in part, through the balance between the pro-inflammatory cytokine, TNF-α, and the pro-resolving mediator, RvD1. Although VPAC1 is considered the major VIP receptor, VPAC2 is predominantly expressed on HREC under both normal and high glucose conditions.