Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. C. Heath-Heckman is active.

Publication


Featured researches published by Elizabeth A. C. Heath-Heckman.


Applied and Environmental Microbiology | 2012

Squid-Derived Chitin Oligosaccharides Are a Chemotactic Signal during Colonization by Vibrio fischeri

Mark J. Mandel; Amy L. Schaefer; Caitlin A. Brennan; Elizabeth A. C. Heath-Heckman; Cindy R. DeLoney-Marino; Margaret J. McFall-Ngai; Edward G. Ruby

ABSTRACT Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae (“vibrios”), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbionts nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.


Zoology | 2011

The occurrence of chitin in the hemocytes of invertebrates

Elizabeth A. C. Heath-Heckman; Margaret J. McFall-Ngai

The light-organ symbiosis of Euprymna scolopes, the Hawaiian bobtail squid, is a useful model for the study of animal-microbe interactions. Recent analyses have demonstrated that chitin breakdown products play a role in communication between E. scolopes and its bacterial symbiont Vibrio fischeri. In this study, we sought to determine the source of chitin in the symbiotic organ. We used a commercially available chitin-binding protein (CBP) conjugated to fluorescein to label the polymeric chitin in host tissues. Confocal microscopy revealed that the only cells in contact with the symbionts that labeled with the probe were the macrophage-like hemocytes, which traffic into the light-organ crypts where the bacteria reside. Labeling of extracted hemocytes by CBP was markedly decreased following treatment with purified chitinase, providing further evidence that the labeled molecule is polymeric chitin. Further, CBP-positive areas co-localized with both a halide peroxidase antibody and Lysotracker, a lysosomal marker, suggesting that the chitin-like biomolecule occurs in the lysosome or acidic vacuoles. Reverse transcriptase polymerase chain reaction (PCR) of hemocytes revealed mRNA coding for a chitin synthase, suggesting that the hemocytes synthesize chitin de novo. Finally, upon surveying blood cells from other invertebrate species, we observed CBP-positive regions in all granular blood cells examined, suggesting that this feature is a shared character among the invertebrates; the vertebrate blood cells that we sampled did not label with CBP. Although the function of the chitin-like material remains undetermined, its presence and subcellular location in invertebrate hemocytes suggests a conserved role for this polysaccharide in the immune system of diverse animals.


Mbio | 2013

Bacterial Bioluminescence Regulates Expression of a Host Cryptochrome Gene in the Squid-Vibrio Symbiosis

Elizabeth A. C. Heath-Heckman; Suzanne M. Peyer; Cheryl A. Whistler; Michael A. Apicella; William E. Goldman; Margaret J. McFall-Ngai

ABSTRACT The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut. IMPORTANCE In mammals, biological rhythms of the intestinal epithelium and the associated mucosal immune system regulate such diverse processes as lipid trafficking and the immune response to pathogens. While these same processes are affected by the diverse resident microbiota, the extent to which these microbial communities control or are controlled by these rhythms has not been addressed. This study provides evidence that the presentation of three bacterial products (lipid A, peptidoglycan monomer, and blue light) is required for cyclic expression of a cryptochrome gene in the symbiotic organ. The finding that bacteria can directly influence the transcription of a gene encoding a protein implicated in the entrainment of circadian rhythms provides the first evidence for the role of bacterial symbionts in influencing, and perhaps driving, peripheral circadian oscillators in the host. In mammals, biological rhythms of the intestinal epithelium and the associated mucosal immune system regulate such diverse processes as lipid trafficking and the immune response to pathogens. While these same processes are affected by the diverse resident microbiota, the extent to which these microbial communities control or are controlled by these rhythms has not been addressed. This study provides evidence that the presentation of three bacterial products (lipid A, peptidoglycan monomer, and blue light) is required for cyclic expression of a cryptochrome gene in the symbiotic organ. The finding that bacteria can directly influence the transcription of a gene encoding a protein implicated in the entrainment of circadian rhythms provides the first evidence for the role of bacterial symbionts in influencing, and perhaps driving, peripheral circadian oscillators in the host.


Environmental Microbiology | 2013

The first engagement of partners in the Euprymna scolopes–Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells

Melissa A. Altura; Elizabeth A. C. Heath-Heckman; Amani A. Gillette; Natacha Kremer; Anne Marie Krachler; Caitlin A. Brennan; Edward G. Ruby; Kim Orth; Margaret J. McFall-Ngai

We studied the Euprymna scolopes-Vibrio fischeri symbiosis to characterize, in vivo and in real time, the transition between the bacterial partners free-living and symbiotic life styles. Previous studies using high inocula demonstrated that environmental V. fischeri cells aggregate during a 3 h period in host-shed mucus along the light organs superficial ciliated epithelia. Under lower inoculum conditions, similar to the levels of symbiont cells in the environment, this interaction induces haemocyte trafficking into these tissues. Here, in experiments simulating natural conditions, microscopy revealed that at 3 h following first exposure, only ∼ 5 V. fischeri cells aggregated on the organ surface. These cells associated with host cilia and induced haemocyte trafficking. Symbiont viability was essential and mutants defective in symbiosis initiation and/or production of certain surface features, including the Mam7 protein, which is implicated in host cell attachment of V. cholerae, associated normally with host cilia. Studies with exopolysaccharide mutants, which are defective in aggregation, suggest a two-step process of V. fischeri cell engagement: association with host cilia followed by aggregation, i.e. host cell-symbiont interaction with subsequent symbiont-symbiont cell interaction. Taken together, these data provide a new model of early partner engagement, a complex model of host-symbiont interaction with exquisite sensitivity.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The chemistry of negotiation: Rhythmic, glycan-driven acidification in a symbiotic conversation

Julia A. Schwartzman; Eric Koch; Elizabeth A. C. Heath-Heckman; Lawrence Zhou; Natacha Kremer; Margaret J. McFall-Ngai; Edward G. Ruby

Significance The chemical dialog through which a host promotes long-term symbioses with particular microbial partners remains largely unexplored, especially within complex consortia like the human microbiota. Natural, monospecific associations, including that between bobtail squid and Vibrio fischeri, have proved useful for discovering shared strategies, such as rhythmic microbial signaling and symbiosis-induced development, subsequently found in mammalian associations. Here, we demonstrate that symbiont metabolism is driven by a diel provision of a squid-derived glycan, resulting in tissue acidification. This event alters bacterial physiology, favoring the cyclic production of bioluminescence, the functional basis of the symbiosis. More generally, studies of this association can help reveal mechanisms by which other hosts modulate the chemistry of symbiosis to regulate microbial community function. Glycans have emerged as critical determinants of immune maturation, microbial nutrition, and host health in diverse symbioses. In this study, we asked how cyclic delivery of a single host-derived glycan contributes to the dynamic stability of the mutualism between the squid Euprymna scolopes and its specific, bioluminescent symbiont, Vibrio fischeri. V. fischeri colonizes the crypts of a host organ that is used for behavioral light production. E. scolopes synthesizes the polymeric glycan chitin in macrophage-like immune cells called hemocytes. We show here that, just before dusk, hemocytes migrate from the vasculature into the symbiotic crypts, where they lyse and release particulate chitin, a behavior that is established only in the mature symbiosis. Diel transcriptional rhythms in both partners further indicate that the chitin is provided and metabolized only at night. A V. fischeri mutant defective in chitin catabolism was able to maintain a normal symbiont population level, but only until the symbiotic organ reached maturity (∼4 wk after colonization); this result provided a direct link between chitin utilization and symbiont persistence. Finally, catabolism of chitin by the symbionts was also specifically required for a periodic acidification of the adult crypts each night. This acidification, which increases the level of oxygen available to the symbionts, enhances their capacity to produce bioluminescence at night. We propose that other animal hosts may similarly regulate the activities of epithelium-associated microbial communities through the strategic provision of specific nutrients, whose catabolism modulates conditions like pH or anoxia in their symbionts’ habitat.


Cellular Microbiology | 2013

Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes.

John M. Chaston; Kristen E. Murfin; Elizabeth A. C. Heath-Heckman; Heidi Goodrich-Blair

The specificity of a horizontally transmitted microbial symbiosis is often defined by molecular communication between host and microbe during initial engagement, which can occur in discrete stages. In the symbiosis between Steinernema nematodes and Xenorhabdus bacteria, previous investigations focused on bacterial colonization of the intestinal lumen (receptacle) of the nematode infective juvenile (IJ), as this was the only known persistent, intimate and species‐specific contact between the two. Here we show that bacteria colonize the anterior intestinal cells of other nematode developmental stages in a species‐specific manner. Also, we describe three processes that only occur in juveniles that are destined to become IJs. First, a few bacterial cells colonize the nematode pharyngeal‐intestinal valve (PIV) anterior to the intestinal epithelium. Second, the nematode intestine constricts while bacteria initially remain in the PIV. Third, anterior intestinal constriction relaxes and colonizing bacteria occupy the receptacle. At each stage, colonization requires X. nematophila symbiosis region 1 (SR1) genes and is species‐specific: X. szentirmaii, which naturally lacks SR1, does not colonize unless SR1 is ectopically expressed. These findings reveal new aspects of Xenorhabdus bacteria interactions with and transmission by theirSteinernema nematode hosts, and demonstrate that bacterial SR1 genes aid in colonizing nematode epithelial surfaces.


The Biological Bulletin | 2014

Identifying the Cellular Mechanisms of Symbiont-Induced Epithelial Morphogenesis in the Squid-Vibrio Association

Tanya A. Koropatnick; Michael S. Goodson; Elizabeth A. C. Heath-Heckman; Margaret J. McFall-Ngai

The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome

Janna Nawroth; Hanliang Guo; Eric Koch; Elizabeth A. C. Heath-Heckman; John C. Hermanson; Edward G. Ruby; John O. Dabiri; Eva Kanso; Margaret J. McFall-Ngai

Significance Recent findings demonstrate that microbiome communities often reside on mucociliated surfaces. While mucociliary clearance of bacteria from such surfaces has been extensively studied, the process of bacterial recruitment has remained unexplored. Here, using a simple model system, we show that ciliated surfaces, in addition to their clearance function, can create fluid-mechanical microhabitats with distinct transport and mixing properties that facilitate the active recruitment of symbiotic candidates from a background of suspended particles. Although each specific system will have unique properties, because ciliary structure and function are highly conserved, studies of models will contribute to an understanding of rules governing the selective behavior of ciliated surfaces. We show that mucociliary membranes of animal epithelia can create fluid-mechanical microenvironments for the active recruitment of the specific microbiome of the host. In terrestrial vertebrates, these tissues are typically colonized by complex consortia and are inaccessible to observation. Such tissues can be directly examined in aquatic animals, providing valuable opportunities for the analysis of mucociliary activity in relation to bacteria recruitment. Using the squid–vibrio model system, we provide a characterization of the initial engagement of microbial symbionts along ciliated tissues. Specifically, we developed an empirical and theoretical framework to conduct a census of ciliated cell types, create structural maps, and resolve the spatiotemporal flow dynamics. Our multiscale analyses revealed two distinct, highly organized populations of cilia on the host tissues. An array of long cilia (∼25 μm) with metachronal beat creates a flow that focuses bacteria-sized particles, at the exclusion of larger particles, into sheltered zones; there, a field of randomly beating short cilia (∼10 μm) mixes the local fluid environment, which contains host biochemical signals known to prime symbionts for colonization. This cilia-mediated process represents a previously unrecognized mechanism for symbiont recruitment. Each mucociliary surface that recruits a microbiome such as the case described here is likely to have system-specific features. However, all mucociliary surfaces are subject to the same physical and biological constraints that are imposed by the fluid environment and the evolutionary conserved structure of cilia. As such, our study promises to provide insight into universal mechanisms that drive the recruitment of symbiotic partners.


Cellular Microbiology | 2016

Environmental cues and symbiont MAMPs function in concert to drive the daily remodeling of the crypt‐cell brush border of the Euprymna scolopes light organ

Elizabeth A. C. Heath-Heckman; Jamie S. Foster; Michael A. Apicella; William E. Goldman; Margaret J. McFall-Ngai

Recent research has shown that the microbiota affects the biology of associated host epithelial tissues, including their circadian rhythms, although few data are available on how such influences shape the microarchitecture of the brush border. The squid‐vibrio system exhibits two modifications of the brush border that supports the symbionts: effacement and repolarization. Together these occur on a daily rhythm in adult animals, at the dawn expulsion of symbionts into the environment, and symbiont colonization of the juvenile host induces an increase in microvillar density. Here we sought to define how these processes are related and the roles of both symbiont colonization and environmental cues. Ultrastructural analyses showed that the juvenile‐organ brush borders also efface concomitantly with daily dawn‐cued expulsion of symbionts. Manipulation of the environmental light cue and juvenile symbiotic state demonstrated that this behaviour requires the light cue, but not colonization. In contrast, symbionts were required for the observed increase in microvillar density that accompanies post dawn brush‐border repolarization; this increase was induced solely by host exposure to phosphorylated lipid A of symbiont cells. These data demonstrate that a partnering of environmental and symbiont cues shapes the brush border and that microbe‐associated molecular patterns play a role in the regulation of brush‐border microarchitecture.


Cellular Microbiology | 2016

Environmental cues and symbiont microbe-associated molecular patterns function in concert to drive the daily remodelling of the crypt-cell brush border of the Euprymna scolopes light organ.

Elizabeth A. C. Heath-Heckman; Jamie S. Foster; Michael A. Apicella; William E. Goldman; Margaret J. McFall-Ngai

Recent research has shown that the microbiota affects the biology of associated host epithelial tissues, including their circadian rhythms, although few data are available on how such influences shape the microarchitecture of the brush border. The squid‐vibrio system exhibits two modifications of the brush border that supports the symbionts: effacement and repolarization. Together these occur on a daily rhythm in adult animals, at the dawn expulsion of symbionts into the environment, and symbiont colonization of the juvenile host induces an increase in microvillar density. Here we sought to define how these processes are related and the roles of both symbiont colonization and environmental cues. Ultrastructural analyses showed that the juvenile‐organ brush borders also efface concomitantly with daily dawn‐cued expulsion of symbionts. Manipulation of the environmental light cue and juvenile symbiotic state demonstrated that this behaviour requires the light cue, but not colonization. In contrast, symbionts were required for the observed increase in microvillar density that accompanies post dawn brush‐border repolarization; this increase was induced solely by host exposure to phosphorylated lipid A of symbiont cells. These data demonstrate that a partnering of environmental and symbiont cues shapes the brush border and that microbe‐associated molecular patterns play a role in the regulation of brush‐border microarchitecture.

Collaboration


Dive into the Elizabeth A. C. Heath-Heckman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward G. Ruby

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Natacha Kremer

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Suzanne M. Peyer

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

William E. Goldman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Amani A. Gillette

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Caitlin A. Brennan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Eric Koch

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge