Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Cameron is active.

Publication


Featured researches published by Elizabeth A. Cameron.


Nature Reviews Microbiology | 2012

How glycan metabolism shapes the human gut microbiota

Nicole M. Koropatkin; Elizabeth A. Cameron; Eric C. Martens

Symbiotic microorganisms that reside in the human intestine are adept at foraging glycans and polysaccharides, including those in dietary plants (starch, hemicellulose and pectin), animal-derived cartilage and tissue (glycosaminoglycans and N-linked glycans), and host mucus (O-linked glycans). Fluctuations in the abundance of dietary and endogenous glycans, combined with the immense chemical variation among these molecules, create a dynamic and heterogeneous environment in which gut microorganisms proliferate. In this Review, we describe how glycans shape the composition of the gut microbiota over various periods of time, the mechanisms by which individual microorganisms degrade these glycans, and potential opportunities to intentionally influence this ecosystem for better health and nutrition.


Nature | 2015

Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

Fiona Cuskin; Elisabeth C. Lowe; Max J. Temple; Yanping Zhu; Elizabeth A. Cameron; Nicholas A. Pudlo; Nathan T. Porter; Karthik Urs; Andrew J. Thompson; Alan Cartmell; Artur Rogowski; Brian S. Hamilton; Rui Chen; Thomas J. Tolbert; Kathleen Piens; Debby Bracke; Wouter Vervecken; Zalihe Hakki; Gaetano Speciale; Jose L. Munōz-Munōz; Andrew Day; Maria J. Peña; Richard McLean; Michael D. L. Suits; Alisdair B. Boraston; Todd Atherly; Cherie J. Ziemer; Spencer J. Williams; Gideon J. Davies; D. Wade Abbott

Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a ‘selfish’ model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.


Journal of Biological Chemistry | 2012

Multidomain Carbohydrate-binding Proteins Involved in Bacteroides thetaiotaomicron Starch Metabolism

Elizabeth A. Cameron; Mallory Maynard; Christopher J. Smith; Thomas J. Smith; Nicole M. Koropatkin; Eric C. Martens

Background: Bacteroides thetaiotaomicron is a prototype for understanding carbohydrate metabolism by colonic bacteria. Results: Two nonenzymatic membrane proteins involved in starch metabolism are composed of tandem carbohydrate-binding modules that each bind starch differently. Conclusion: B. thetaiotaomicron has evolved multiple starch-binding modules to compete for different forms of starch. Significance: Learning how gut bacteria degrade carbohydrates is crucial for understanding their role in nutrition. Human colonic bacteria are necessary for the digestion of many dietary polysaccharides. The intestinal symbiont Bacteroides thetaiotaomicron uses five outer membrane proteins to bind and degrade starch. Here, we report the x-ray crystallographic structures of SusE and SusF, two outer membrane proteins composed of tandem starch specific carbohydrate-binding modules (CBMs) with no enzymatic activity. Examination of the two CBMs in SusE and three CBMs in SusF reveals subtle differences in the way each binds starch and is reflected in their Kd values for both high molecular weight starch and small maltooligosaccharides. Thus, each site seems to have a unique starch preference that may enable these proteins to interact with different regions of starch or its breakdown products. Proteins similar to SusE and SusF are encoded in many other polysaccharide utilization loci that are possessed by human gut bacteria in the phylum Bacteroidetes. Thus, these proteins are likely to play an important role in carbohydrate metabolism in these abundant symbiotic species. Understanding structural changes that diversify and adapt related proteins in the human gut microbial community will be critical to understanding the detailed mechanistic roles that they perform in the complex digestive ecosystem.


Cell Host & Microbe | 2015

Colitogenic Bacteroides thetaiotaomicron Antigens Access Host Immune Cells in a Sulfatase-Dependent Manner via Outer Membrane Vesicles

Christina A. Hickey; Kristine A. Kuhn; David L. Donermeyer; Nathan T. Porter; Chunsheng Jin; Elizabeth A. Cameron; Haerin Jung; Gerard E. Kaiko; Marta Wegorzewska; Nicole P. Malvin; Robert W.P. Glowacki; Gunnar C. Hansson; Paul M. Allen; Eric C. Martens; Thaddeus S. Stappenbeck

Microbes interact with the host immune system via several potential mechanisms. One essential step for each mechanism is the method by which intestinal microbes or their antigens access specific host immune cells. Using genetically susceptible mice (dnKO) that develop spontaneous, fulminant colitis, triggered by Bacteroides thetaiotaomicron (B. theta), we investigated the mechanism of intestinal microbial access under conditions that stimulate colonic inflammation. B. theta antigens localized to host immune cells through outer membrane vesicles (OMVs) that harbor bacterial sulfatase activity. We deleted the anaerobic sulfatase maturating enzyme (anSME) from B. theta, which is required for post-translational activation of all B. theta sulfatase enzymes. This bacterial mutant strain did not stimulate colitis in dnKO mice. Lastly, access of B. theta OMVs to host immune cells was sulfatase dependent. These data demonstrate that bacterial OMVs and associated enzymes promote inflammatory immune stimulation in genetically susceptible hosts.


Mbio | 2014

Multifunctional Nutrient-Binding Proteins Adapt Human Symbiotic Bacteria for Glycan Competition in the Gut by Separately Promoting Enhanced Sensing and Catalysis

Elizabeth A. Cameron; Kurt J. Kwiatkowski; Byung Hoo Lee; Bruce R. Hamaker; Nicole M. Koropatkin; Eric C. Martens

ABSTRACT To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. IMPORTANCE Our intestinal tract harbors trillions of symbiotic microbes. A critical function contributed by this microbial community is the ability to degrade most of the complex carbohydrates in our diet, which not only change from meal to meal but also cannot be digested by our own bodies. A numerically abundant group of gut bacteria called the Bacteroidetes plays a prominent role in carbohydrate digestion in humans and other animals. Currently, the mechanisms that allow this bacterial group to rapidly respond to available carbohydrates and then digest them efficiently are unclear. Here, we present novel functions for four carbohydrate-binding proteins present in one member of the Bacteroidetes, revealing that these proteins serve unique and separable roles in either initial nutrient sensing or subsequent digestion. Because the protein families investigated are numerous in other gut bacteria colonizing nearly all humans and animals, our findings are fundamentally important to understanding how symbiotic microbes assist human digestion. Our intestinal tract harbors trillions of symbiotic microbes. A critical function contributed by this microbial community is the ability to degrade most of the complex carbohydrates in our diet, which not only change from meal to meal but also cannot be digested by our own bodies. A numerically abundant group of gut bacteria called the Bacteroidetes plays a prominent role in carbohydrate digestion in humans and other animals. Currently, the mechanisms that allow this bacterial group to rapidly respond to available carbohydrates and then digest them efficiently are unclear. Here, we present novel functions for four carbohydrate-binding proteins present in one member of the Bacteroidetes, revealing that these proteins serve unique and separable roles in either initial nutrient sensing or subsequent digestion. Because the protein families investigated are numerous in other gut bacteria colonizing nearly all humans and animals, our findings are fundamentally important to understanding how symbiotic microbes assist human digestion.


Mbio | 2014

Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts

Krishanthi S. Karunatilaka; Elizabeth A. Cameron; Eric C. Martens; Nicole M. Koropatkin; Julie S. Biteen

ABSTRACT Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. IMPORTANCE In this study, we used nanometer-scale superresolution imaging to reveal dynamic interactions between the proteins involved in starch processing by the prominent human gut symbiont Bacteroides thetaiotaomicron in real time in live cells. These results represent the first working model of starch utilization system (Sus) complex assembly and function during glycan catabolism and are likely to describe aspects of how other Sus-like systems function in human gut Bacteroidetes. Our results provide unique mechanistic insights into a glycan catabolism strategy that is prevalent within the human gut microbial community. Proper understanding of this conserved nutrient uptake mechanism is essential for the development of dietary or pharmaceutical therapies to control intestinal tract microbial populations, to enhance human health, and to treat disease. In this study, we used nanometer-scale superresolution imaging to reveal dynamic interactions between the proteins involved in starch processing by the prominent human gut symbiont Bacteroides thetaiotaomicron in real time in live cells. These results represent the first working model of starch utilization system (Sus) complex assembly and function during glycan catabolism and are likely to describe aspects of how other Sus-like systems function in human gut Bacteroidetes. Our results provide unique mechanistic insights into a glycan catabolism strategy that is prevalent within the human gut microbial community. Proper understanding of this conserved nutrient uptake mechanism is essential for the development of dietary or pharmaceutical therapies to control intestinal tract microbial populations, to enhance human health, and to treat disease.


Nature | 2015

Corrigendum: Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

Fiona Cuskin; Elisabeth C. Lowe; Max J. Temple; Yanping Zhu; Elizabeth A. Cameron; Nicholas A. Pudlo; Nathan T. Porter; Karthik Urs; Andrew J. Thompson; Alan Cartmell; Artur Rogowski; Brian S. Hamilton; Rui Chen; Thomas J. Tolbert; Kathleen Piens; Debby Bracke; Wouter Vervecken; Zalihe Hakki; Gaetano Speciale; Jose L. Munōz-Munōz; Andrew Day; Maria J. Peña; Richard McLean; Michael D. L. Suits; Alisdair B. Boraston; Todd Atherly; Cherie J. Ziemer; Spencer J. Williams; Gideon J. Davies; D. Wade Abbott

This corrects the article DOI: 10.1038/nature13995


Proceedings of SPIE | 2013

Single-molecule imaging can be achieved in live obligate anaerobic bacteria

Krishanthi S. Karunatilaka; Ben R. Coupland; Elizabeth A. Cameron; Eric C. Martens; Nicole K. Koropatkin; Julie S. Biteen

Single-molecule fluorescence (SMF) permits imaging with nanometer-scale resolution. This technique is particularly useful for cellular imaging as it provides a non-invasive, minimally perturbative means to examine macromolecular localization and dynamics, even in live cells. Here, we demonstrate that nanometer-scale SMF imaging can be extended to a new category of experiments: intracellular imaging of live, obligate anaerobic cells on the benchtop. We investigate the starch-utilization system (Sus) proteins in the gut symbiont Bacteroides thetaiotaomicron and discuss three different labels that we implemented to detect these proteins: fluorescent proteins, the tetracysteine-based FlAsH tag, and the enzymatic HaloTag.


Biophysical Journal | 2015

Beyond Model Systems: Super-Resolving the Subcellular Dynamics of Starch Digestion in the Human Gut Microbiome

Krishanthi S. Karunatilaka; Elizabeth A. Cameron; Eric C. Martens; Nicole M. Koropatkin; Julie S. Biteen


Biophysical Journal | 2014

Glycan Catabolism by Human Gut Symbionts involves Dynamic Protein Interactions

Krishanthi S. Karunatilaka; Elizabeth A. Cameron; Nicole M. Koropatkin; Eric C. Martens; Julie S. Biteen

Collaboration


Dive into the Elizabeth A. Cameron's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian S. Hamilton

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Cherie J. Ziemer

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Karthik Urs

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge