Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Dun is active.

Publication


Featured researches published by Elizabeth A. Dun.


Nature | 2008

Strigolactone inhibition of shoot branching

Victoria Gomez-Roldan; Soraya Fermas; Philip B. Brewer; Virginie Puech-Pagès; Elizabeth A. Dun; Jean-Paul Pillot; Fabien Letisse; Radoslava Matusova; Saïda Danoun; Jean-Charles Portais; Harro J. Bouwmeester; Guillaume Bécard; Christine A. Beveridge; Catherine Rameau; Soizic Rochange

A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.


Plant Physiology | 2009

Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis.

Philip B. Brewer; Elizabeth A. Dun; Brett J. Ferguson; Catherine Rameau; Christine A. Beveridge

During the last century, two key hypotheses have been proposed to explain apical dominance in plants: auxin promotes the production of a second messenger that moves up into buds to repress their outgrowth, and auxin saturation in the stem inhibits auxin transport from buds, thereby inhibiting bud outgrowth. The recent discovery of strigolactone as the novel shoot-branching inhibitor allowed us to test its mode of action in relation to these hypotheses. We found that exogenously applied strigolactone inhibited bud outgrowth in pea (Pisum sativum) even when auxin was depleted after decapitation. We also found that strigolactone application reduced branching in Arabidopsis (Arabidopsis thaliana) auxin response mutants, suggesting that auxin may act through strigolactones to facilitate apical dominance. Moreover, strigolactone application to tiny buds of mutant or decapitated pea plants rapidly stopped outgrowth, in contrast to applying N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, which significantly slowed growth only after several days. Whereas strigolactone or NPA applied to growing buds reduced bud length, only NPA blocked auxin transport in the bud. Wild-type and strigolactone biosynthesis mutant pea and Arabidopsis shoots were capable of instantly transporting additional amounts of auxin in excess of endogenous levels, contrary to predictions of auxin transport models. These data suggest that strigolactone does not act primarily by affecting auxin transport from buds. Rather, the primary repressor of bud outgrowth appears to be the auxin-dependent production of strigolactones.


Plant Physiology | 2006

Branching Genes Are Conserved across Species. Genes Controlling a Novel Signal in Pea Are Coregulated by Other Long-Distance Signals

Xenie Johnson; Tanya Brcich; Elizabeth A. Dun; Magali Goussot; Karine Haurogné; Christine A. Beveridge; Catherine Rameau

Physiological and genetic studies with the ramosus (rms) mutants in garden pea (Pisum sativum) and more axillary shoots (max) mutants in Arabidopsis (Arabidopsis thaliana) have shown that shoot branching is regulated by a network of long-distance signals. Orthologous genes RMS1 and MAX4 control the synthesis of a novel graft-transmissible branching signal that may be a carotenoid derivative and acts as a branching inhibitor. In this study, we demonstrate further conservation of the branching control system by showing that MAX2 and MAX3 are orthologous to RMS4 and RMS5, respectively. This is consistent with the long-standing hypothesis that branching in pea is regulated by a novel long-distance signal produced by RMS1 and RMS5 and that RMS4 is implicated in the response to this signal. We examine RMS5 expression and show that it is more highly expressed relative to RMS1, but under similar transcriptional regulation as RMS1. Further expression studies support the hypothesis that RMS4 functions in shoot and rootstock and participates in the feedback regulation of RMS1 and RMS5 expression. This feedback involves a second novel long-distance signal that is lacking in rms2 mutants. RMS1 and RMS5 are also independently regulated by indole-3-acetic acid. RMS1, rather than RMS5, appears to be a key regulator of the branching inhibitor. This study presents new interactions between RMS genes and provides further evidence toward the ongoing elucidation of a model of axillary bud outgrowth in pea.


Proceedings of the National Academy of Sciences of the United States of America | 2011

F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana

David C. Nelson; Adrian Scaffidi; Elizabeth A. Dun; Mark T. Waters; Gavin R. Flematti; Kingsley W. Dixon; Christine A. Beveridge; Emilio L. Ghisalberti; Steven M. Smith

Smoke is an important abiotic cue for plant regeneration in postfire landscapes. Karrikins are a class of compounds discovered in smoke that promote seed germination and influence early development of many plants by an unknown mechanism. A genetic screen for karrikin-insensitive mutants in Arabidopsis thaliana revealed that karrikin signaling requires the F-box protein MAX2, which also mediates responses to the structurally-related strigolactone family of phytohormones. Karrikins and the synthetic strigolactone GR24 trigger similar effects on seed germination, seedling photomorphogenesis, and expression of a small set of genes during these developmental stages. Karrikins also repress MAX4 and IAA1 transcripts, which show negative feedback regulation by strigolactone. We demonstrate that all of these common responses are abolished in max2 mutants. Unlike strigolactones, however, karrikins do not inhibit shoot branching in Arabidopsis or pea, indicating that plants can distinguish between these signals. These results suggest that a MAX2-dependent signal transduction mechanism was adapted to mediate responses to two chemical cues with distinct roles in plant ecology and development.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants

Javier Agustí; Silvia Herold; Martina Schwarz; Pablo Sanchez; Karin Ljung; Elizabeth A. Dun; Philip B. Brewer; Christine A. Beveridge; Tobias Sieberer; Eva M. Sehr; Thomas Greb

Long distance cell-to-cell communication is critical for the development of multicellular organisms. In this respect, plants are especially demanding as they constantly integrate environmental inputs to adjust growth processes to different conditions. One example is thickening of shoots and roots, also designated as secondary growth. Secondary growth is mediated by the vascular cambium, a stem cell-like tissue whose cell-proliferating activity is regulated over a long distance by the plant hormone auxin. How auxin signaling is integrated at the level of cambium cells and how cambium activity is coordinated with other growth processes are largely unknown. Here, we provide physiological, genetic, and pharmacological evidence that strigolactones (SLs), a group of plant hormones recently described to be involved in the repression of shoot branching, positively regulate cambial activity and that this function is conserved among species. We show that SL signaling in the vascular cambium itself is sufficient for cambium stimulation and that it interacts strongly with the auxin signaling pathway. Our results provide a model of how auxin-based long-distance signaling is translated into cambium activity and suggest that SLs act as general modulators of plant growth forms linking the control of shoot branching with the thickening of stems and roots.


Plant Physiology | 2012

Antagonistic action of strigolactone and cytokinin in bud outgrowth control

Elizabeth A. Dun; Alexandre de Saint Germain; Catherine Rameau; Christine A. Beveridge

Cytokinin (CK) has long been implicated as a promoter of bud outgrowth in plants, but exactly how this is achieved in coordination with other plant hormones is unclear. The recent discovery of strigolactones (SLs) as the long-sought branch-inhibiting hormone allowed us to test how CK and SL coordinately regulate bud outgrowth in pea (Pisum sativum). We found that SL-deficient plants are more sensitive to stimulation of bud growth by low concentrations of locally applied CK than wild-type plants. Furthermore, in contrast with SL mutant plants, buds of wild-type plants are almost completely resistant to stimulation by CK supplied to the vasculature. Regardless of whether the exogenous hormones were supplied locally or to the xylem stream, SL and CK acted antagonistically on bud outgrowth. These data suggest that SLs do not affect the delivery of CK to axillary buds and vice versa. Rather, these data combined with dose-response experiments suggest that SLs and CK can act directly in buds to control their outgrowth. These hormones may converge at a common point in the bud outgrowth regulatory pathway. The expression of pea BRANCHED1, a TCP transcription factor expressed strongly in buds and thought to act downstream of SLs in shoot branching, is regulated by CK and SL without a requirement for protein synthesis and in a manner that correlates with observed bud growth responses.


Trends in Plant Science | 2009

Strigolactones: discovery of the elusive shoot branching hormone

Elizabeth A. Dun; Philip B. Brewer; Christine A. Beveridge

The control of axillary bud outgrowth involves a network of hormonal signals and feedback regulation. A repressor of bud outgrowth that is central to the story has been missing since it was first postulated more than 70 years ago. This hormone moves upward in plant stems and can act as a long-distance messenger for auxin. Strigolactones, previously known as carotenoid-derived signals exuded from roots, fit the role of this elusive hormone. The discovery of branching inhibition by strigolactones will help solve many confusing aspects of branch control, including interactions with other signals, and is a great step forward toward uncovering the links between environment, genetics and plant form.


Plant Physiology | 2006

Apical dominance and shoot branching. Divergent opinions or divergent mechanisms

Elizabeth A. Dun; Brett J. Ferguson; Christine A. Beveridge

Apical dominance is the term used to describe the control of the shoot tip over axillary bud outgrowth (e.g. [Cline, 1997][1]). It is best demonstrated via shoot tip removal (decapitation), which leads to apical dominance. Indeed, decapitation has been widely used to study bud outgrowth. In contrast


Plant Physiology | 2013

Strigolactones Stimulate Internode Elongation Independently of Gibberellins

Alexandre de Saint Germain; Yasmine Ligerot; Elizabeth A. Dun; Jean-Paul Pillot; John Ross; Christine A. Beveridge; Catherine Rameau

Strigolactones stimulate internode elongation by regulating cell division using a gibberellin-independent pathway. Strigolactone (SL) mutants in diverse species show reduced stature in addition to their extensive branching. Here, we show that this dwarfism in pea (Pisum sativum) is not attributable to the strong branching of the mutants. The continuous supply of the synthetic SL GR24 via the root system using hydroponics can restore internode length of the SL-deficient rms1 mutant but not of the SL-response rms4 mutant, indicating that SLs stimulate internode elongation via RMS4. Cytological analysis of internode epidermal cells indicates that SLs control cell number but not cell length, suggesting that SL may affect stem elongation by stimulating cell division. Consequently, SLs can repress (in axillary buds) or promote (in the stem) cell division in a tissue-dependent manner. Because gibberellins (GAs) increase internode length by affecting both cell division and cell length, we tested if SLs stimulate internode elongation by affecting GA metabolism or signaling. Genetic analyses using SL-deficient and GA-deficient or DELLA-deficient double mutants, together with molecular and physiological approaches, suggest that SLs act independently from GAs to stimulate internode elongation.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Lateral branching oxidoreductase acts in the final stages of strigolactone biosynthesis in Arabidopsis

Philip B. Brewer; Kaori Yoneyama; Fiona Filardo; Emma Meyers; Adrian Scaffidi; Tancred Frickey; Kohki Akiyama; Yoshiya Seto; Elizabeth A. Dun; Julia E. Cremer; Stephanie C. Kerr; Mark T. Waters; Gavin R. Flematti; Michael G. Mason; Georg F. Weiller; Shinjiro Yamaguchi; Takahito Nomura; Steven M. Smith; Koichi Yoneyama; Christine A. Beveridge

Significance Strigolactone hormones regulate many plant growth and developmental processes and are particularly important in regulating growth in response to nonoptimal conditions. Plants produce a range of bioactive strigolactone-like compounds, suggesting that the biosynthesis pathway is complex. Despite this complexity, only one type of enzyme, the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450, has been attributed to the diversity of strigolactones. Using transcriptomics and reverse genetics, we discovered a previously uncharacterized gene that encodes a 2-oxoglutarate and Fe(II)-dependent dioxygenase involved in strigolactone production downstream of MAX1. Studies with the corresponding mutant have shown that previously identified strigolactone-type compounds in Arabidopsis are not the major strigolactone-type shoot branching hormone in this model species. Strigolactones are a group of plant compounds of diverse but related chemical structures. They have similar bioactivity across a broad range of plant species, act to optimize plant growth and development, and promote soil microbe interactions. Carlactone, a common precursor to strigolactones, is produced by conserved enzymes found in a number of diverse species. Versions of the MORE AXILLARY GROWTH1 (MAX1) cytochrome P450 from rice and Arabidopsis thaliana make specific subsets of strigolactones from carlactone. However, the diversity of natural strigolactones suggests that additional enzymes are involved and remain to be discovered. Here, we use an innovative method that has revealed a missing enzyme involved in strigolactone metabolism. By using a transcriptomics approach involving a range of treatments that modify strigolactone biosynthesis gene expression coupled with reverse genetics, we identified LATERAL BRANCHING OXIDOREDUCTASE (LBO), a gene encoding an oxidoreductase-like enzyme of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. Arabidopsis lbo mutants exhibited increased shoot branching, but the lbo mutation did not enhance the max mutant phenotype. Grafting indicated that LBO is required for a graft-transmissible signal that, in turn, requires a product of MAX1. Mutant lbo backgrounds showed reduced responses to carlactone, the substrate of MAX1, and methyl carlactonoate (MeCLA), a product downstream of MAX1. Furthermore, lbo mutants contained increased amounts of these compounds, and the LBO protein specifically converts MeCLA to an unidentified strigolactone-like compound. Thus, LBO function may be important in the later steps of strigolactone biosynthesis to inhibit shoot branching in Arabidopsis and other seed plants.

Collaboration


Dive into the Elizabeth A. Dun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Paul Pillot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christine Beveridge

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jim Hanan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Françoise Rochange

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phil Brewer

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge