Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Eklund is active.

Publication


Featured researches published by Elizabeth A. Eklund.


Current Opinion in Hematology | 2007

The role of HOX genes in malignant myeloid disease

Elizabeth A. Eklund

Purpose of reviewThe Hox family of homeodomain transcription factors plays an important role in regulating definitive hematopoiesis. Recent studies indicate that a common characteristic of poor prognosis acute myeloid leukemia is dysregulated expression of a key group of these Hox proteins. The purpose of this review is to outline recent progress in understanding the role that dysregulation of HOX-gene expression plays in the pathogenesis of myeloid leukemogenesis. Recent findingsA number of recent studies correlate increased expression of HOXA-genes with poor prognosis cytogenetics in acute myeloid leukemia and mixed lineage leukemia. These studies determine that specific ABD HOXA-genes (HoxA7, 9 and 10) are dysregulated as a group. Many such studies also document co-overexpression of homeodomain proteins of the Meis and Pbx families in poor prognosis leukemia. This is of interest, since Meis and Pbx proteins are common DNA-binding partners for Hox proteins. SummaryThese findings suggest that a key characteristic of poor prognosis acute myeloid leukemia is increased, differentiation-stage inappropriate expression of the Abd HoxA proteins and their DNA-binding partners. Such results suggest that dysregulation of the ‘Hox code’ is important in the pathogenesis of myeloid malignancy.


Journal of Immunology | 2008

Dual regulatory roles of phosphatidylinositol 3-kinase in IFN signaling.

Surinder Kaur; Antonella Sassano; Ajith M. Joseph; Beata Majchrzak-Kita; Elizabeth A. Eklund; Amit Verma; Saskia M. Brachmann; Eleanor N. Fish; Leonidas C. Platanias

PI3K is activated by the type I and II IFN receptors, but its precise role in the generation of IFN responses is not well understood. In the present study we used embryonic fibroblasts from mice with targeted disruption of the genes encoding for both the p85α and p85β regulatory subunits of PI3′-kinase (p85α−/−β−/−) to precisely define the role of PI3K in the control of IFN-induced biological responses. Our data demonstrate that PI3K plays dual regulatory roles in the induction of IFN responses by controlling both IFN-α- and IFN-γ-dependent transcriptional regulation of IFN-sensitive genes and simultaneously regulating the subsequent initiation of mRNA translation for such genes. These processes include the Isg15, Cxcl10, and/or Irf7 genes, whose functions are important in the generation of the biological effects of IFNs. Consistent with this, the induction of IFN antiviral responses is defective in double p85α/p85β knockout cells. Thus, integration of signals via PI3K is a critical event during engagement of the IFN receptors that complements both the transcriptional activity of Jak-STAT pathways and controls initiation of mRNA translation.


Journal of Biological Chemistry | 2005

HOXA9 activates transcription of the gene encoding gp91Phox during myeloid differentiation.

Ling Bei; YuFeng Lu; Elizabeth A. Eklund

The CYBB gene encodes gp91Phox; a component of the phagocyte respiratory burst oxidase. CYBB transcription is restricted to myeloid cells differentiated beyond the promyelocyte stage. In undifferentiated myeloid cells, the homeodomain (HD) transcription factor HoxA10 represses CYBB transcription via a cis element in the proximal promoter. During myelopoiesis, phosphorylation of conserved tyrosine residues in the HD decreases HoxA10 binding to this CYBB cis element. In the current studies, we found HoxA9 activates CYBB transcription in differentiated myeloid cells via the same cis element. We find HoxA9-mediated CYBB-transcription requires Pbx1 but is inhibited by Meis1. Additionally, phosphorylation of the conserved HD tyrosines increases HoxA9 binding to the CYBB promoter. The HOXA9 gene is involved in leukemia-associated translocations with the gene encoding Nup98, a nucleopore protein. We find expression of a Nup98-hoxA9 fusion protein blocks HoxA9-induced CYBB transcription in differentiating myeloid cells. In comparison to HoxA9, Nup98-hoxA9 has greater binding affinity for the CYBB cis element, but binding is not altered by HD tyrosine phosphorylation. Therefore, these studies identify CYBB as a common target gene repressed by HoxA10 and activated by HoxA9. These studies also suggest overexpression of Meis1 or Nup98-hoxA9 represses myeloid-specific gene transcription, thereby contributing to differentiation block in leukemogenesis.


Journal of Clinical Investigation | 2008

Constitutive activation of SHP2 in mice cooperates with ICSBP deficiency to accelerate progression to acute myeloid leukemia

Iwona Konieczna; Elizabeth Horvath; Hao Wang; Stephan Lindsey; Gurveen Saberwal; Ling Bei; Weiqi Huang; Leonidas C. Platanias; Elizabeth A. Eklund

Myeloproliferative disorders (MPDs) are characterized by cytokine hypersensitivity and apoptosis resistance. Development of a block in myeloid differentiation is associated with progression of MPD to acute myeloid leukemia (AML) and portends poor prognosis. Identifying molecular markers of this transition may suggest targets for therapeutic intervention. Interferon consensus sequence binding protein (ICSBP, also known as IRF8) is an interferon-regulatory transcription factor that functions as a leukemia tumor suppressor. In mice, ICSBP deficiency induces an MPD that progresses to AML over time, suggesting that ICSBP deficiency is sufficient for myeloproliferation, but additional genetic lesions are necessary for AML. Since activity of ICSBP is influenced by tyrosine phosphorylation state, we hypothesized that mutations in molecular pathways that regulate this process might synergize with ICSBP deficiency for progression to AML. Consistent with this, we found that constitutive activation of SHP2 protein tyrosine phosphatase synergized with ICSBP haploinsufficiency to facilitate cytokine-induced myeloproliferation, apoptosis resistance, and rapid progression to AML in a murine bone marrow transplantation model. Constitutive SHP2 activation cooperated with ICSBP deficiency to increase the number of progenitors in the bone marrow and myeloid blasts in circulation, indicating a block in differentiation. Since SHP2 activation and ICSBP deficiency may coexist in human myeloid malignancies, our studies have identified a molecular mechanism potentially involved in disease progression in such diseases.


Journal of Biological Chemistry | 2001

Kruppel-like Factor 4 Regulates Laminin α3A Expression in Mammary Epithelial Cells

Kristi A. Miller; Elizabeth A. Eklund; Marie L. Peddinghaus; Zhengjin Cao; Nisha N. Fernandes; Patrick W. Turk; Bayar Thimmapaya; Sigmund A. Weitzman

Laminin-5, the major extracellular matrix protein produced by mammary epithelial cells, is composed of three chains (designated α3A, β3, and γ2), each encoded by a separate gene. Laminin-5 is markedly down-regulated in breast cancer cells. Little is known about the regulation of laminin gene transcription in normal breast cells, nor about the mechanism underlying the down-regulation seen in cancer. In the present study, we cloned the promoter of the gene for the human laminin α3A chain (LAMA3A) and investigated its regulation in functionally normal MCF10A breast epithelial cells and several breast cancer cell lines. Using site-directed mutagenesis of promoter-reporter constructs in transient transfection assays in MCF10A cells, we find that two binding sites for Kruppel-like factor 4 (KLF4/GKLF/EZF) are required for expression driven by the LAMA3A promoter. Electrophoretic mobility shift assays reveal absence of KLF4 binding activity in extracts from T47D, MDA-MB 231, ZR75-1, MDA-MB 436, and MCF7 breast cancer cells. Transient transfection of a plasmid expressing KLF4 activates transcription from the LAMA3A promoter in breast cancer cells. A reporter vector containing duplicate KLF4-binding sites in its promoter is expressed at high levels in MCF10A cells but at negligible levels in breast cancer cells. Thus, KLF4 is required forLAMA3A expression and absence of laminin α3A in breast cancer cells appears, at least in part, attributable to the lack of KLF4 activity.


Journal of Biological Chemistry | 2007

PU.1, Interferon Regulatory Factor (IRF) 2, and the Interferon Consensus Sequence-binding Protein (ICSBP/IRF8) Cooperate to Activate NF1 Transcription in Differentiating Myeloid Cells

Weiqi Huang; Elizabeth Horvath; Elizabeth A. Eklund

Nf1 (neurofibromin 1) is a Ras-GAP protein that regulates cytokine-induced proliferation of myeloid cells. In previous studies, we found that the interferon consensus sequence-binding protein (ICSBP; also referred to as interferon regulatory factor 8) activates transcription of the gene encoding Nf1 (the NF1 gene) in differentiating myeloid cells. We also found that NF1 activation requires cytokine-stimulated phosphorylation of a conserved tyrosine residue in the interferon regulatory factor (IRF) domain of ICSBP/IRF8. In this study, we found that ICSBP/IRF8 cooperates with PU.1 and interferon regulatory factor 2 to activate a composite ets/IRF-cis element in the NF1 promoter. We found that PU.1 binds directly to the NF1-cis element, and DNA-bound PU.1 interacts with IRF2, recruiting IRF2 to the cis element. This interaction requires cytokine-induced phosphorylation of specific serine residues in the PU.1 PEST domain and of a conserved tyrosine residue in the IRF domain of IRF2. We found that ICSBP/IRF8 interaction with the NF1-cis element requires pre-binding of PU.1 and IRF2. The conserved IRF domain tyrosine in ICSBP/IRF8 is required for interaction with the DNA-bound PU.1-IRF2 heterodimer. NF1 deficiency in myeloid progenitor cells results in cytokine hypersensitivity and myeloproliferation. Therefore, these studies identify a target gene for the previously observed tumor-suppressor effect of PU.1. Additionally, these studies identify a tumor-suppressor function for the “oncogenic” transcription factor, IRF2.


Journal of Biological Chemistry | 2009

Role of Schlafen 2 (SLFN2) in the Generation of Interferon α-induced Growth Inhibitory Responses

Efstratios Katsoulidis; Nathalie Carayol; Jennifer Woodard; Iwona Konieczna; Beata Majchrzak-Kita; Alison Jordan; Antonella Sassano; Elizabeth A. Eklund; Eleanor N. Fish; Leonidas C. Platanias

The precise STAT-regulated gene targets that inhibit cell growth and generate the antitumor effects of Type I interferons (IFNs) remain unknown. We provide evidence that Type I IFNs regulate expression of Schlafens (SLFNs), a group of genes involved in the control of cell cycle progression and growth inhibitory responses. Using cells with targeted disruption of different STAT proteins and/or the p38 MAP kinase, we demonstrate that the IFN-dependent expression of distinct Schlafen genes is differentially regulated by STAT complexes and the p38 MAP kinase pathway. We also provide evidence for a key functional role of a member of the SLFN family, SLFN2, in the induction of the growth-suppressive effects of IFNs. This is shown in studies demonstrating that knockdown of SLFN2 enhances hematopoietic progenitor colony formation and reverses the growth-suppressive effects of IFNα on normal hematopoietic progenitors. Importantly, NIH3T3 or L929 cells with stable knockdown of SLFN2 form more colonies in soft agar, implicating this protein in the regulation of anchorage-independent growth. Altogether, our data implicate SLFN2 as a negative regulator of the metastatic and growth potential of malignant cells and strongly suggest a role for the SLFN family of proteins in the generation of the antiproliferative effects of Type I IFNs.


Molecular and Cellular Biology | 2006

Leukemia-Associated, Constitutively Active Mutants of SHP2 Protein Tyrosine Phosphatase Inhibit NF1 Transcriptional Activation by the Interferon Consensus Sequence Binding Protein

Weiqi Huang; Gurveen Saberwal; Elizabeth Horvath; Chunliu Zhu; Stephan Lindsey; Elizabeth A. Eklund

ABSTRACT Deficiency in either the interferon consensus sequence binding protein (ICSBP) or neurofibromin 1 (Nf1) increases the proliferative response of myeloid progenitor cell to hematopoietic cytokines. Consistent with this, we previously demonstrated that ICSBP activates transcription of the gene encoding Nf1 (the NF1 gene). In the studies presented here, we determine that ICSBP tyrosine phosphorylation is necessary for the activation of NF1 transcription. Since ICSBP is tyrosine phosphorylated in response to hematopoietic cytokines, these studies identify a novel pathway by which cytokine-induced posttranslational modification of ICSBP results in NF1 transcription. Nf1 subsequently inactivates cytokine-activated Ras, thereby creating a negative feedback mechanism for cytokine-induced proliferation. In these studies, we also determine that ICSBP is a substrate for SHP2 protein tyrosine phosphatase (SHP2-PTP). We find that wild-type SHP2-PTP dephosphorylates ICSBP only in undifferentiated myeloid cells. In contrast, a leukemia-associated, constitutively activated mutant form of SHP2-PTP dephosphorylates ICSBP in both myeloid progenitors and differentiating myeloid cells. Activated SHP2-PTP mutants thereby inhibit ICSBP-dependent NF1 transcription, impairing this negative feedback mechanism on cytokine-activated Ras. Therefore, these studies suggest that leukemia-associated ICSBP deficiency cooperates with leukemia-associated activating mutants of SHP2-PTP to contribute to the proliferative phenotype in myeloid malignancies.


Journal of Biological Chemistry | 2004

The Interferon Consensus Sequence-binding Protein Activates Transcription of the Gene Encoding Neurofibromin 1

Chunliu Zhu; Gurveen Saberwal; Yu Feng Lu; Leonidas C. Platanias; Elizabeth A. Eklund

Deficiency of the interferon consensus sequence-binding protein (ICSBP) is associated with increased myeloid cell proliferation in response to hematopoietic cytokines. However, previously identified ICSBP target genes do not indicate a mechanism for this “cytokine hypersen-sitivity.” In these studies, we identify the gene encoding neurofibromin 1 (Nf1) as an ICSBP target gene, by chromatin immunoprecipitation. Additionally, we find decreased Nf1 expression in bone marrow-derived myeloid cells from ICSBP–/– mice. Since Nf1 deficiency is also associated with cytokine hypersensitivity, our results suggested that NF1 is a functionally significant ICSBP target gene. Consistent with this, we find that the hyper-sensitivity of ICSBP–/– myeloid cells to granulocyte monocyte colony-stimulating factor (GM-CSF) is reversed by expression of the Nf1 GAP-related domain. We also find that treatment of ICSBP-deficient myeloid cells with monocyte colony-stimulating factor (M-CSF) results in sustained Ras activation, ERK phosphorylation, and proliferation associated with impaired Nf1 expression. These M-CSF effects are reversed by ICSBP expression in ICSBP–/– cells. Consistent with this, we find that ICSBP activates the NF1 promoter in myeloid cell line transfectants and identify an ICSBP-binding NF1 cis element. Therefore, the absence of ICSBP leads to Nf1 deficiency, impairing down-regulation of Ras activation by GM-CSF or M-CSF. These results suggest that one mechanism of increased myeloid proliferation, in ICSBP-deficient cells, is decreased NF1 gene transcription. This novel ICSBP function provides insight into regulation of myelopoiesis under normal conditions and in myeloproliferative disorders.


Journal of Biological Chemistry | 2007

Identification of a HoxA10 Activation Domain Necessary for Transcription of the Gene Encoding β3 Integrin during Myeloid Differentiation

Ling Bei; Yu Feng Lu; Susan L. Bellis; Wei Zhou; Elizabeth Horvath; Elizabeth A. Eklund

Transcription of the ITGB3 gene, which encodes β3 integrin, increases during myeloid differentiation. αvβ3 integrin mediates adhesion to fibronectin or vitronectin and regulates various aspects of the inflammatory response in mature phagocytes. In these studies, we found that the homeodomain transcription factor HoxA10 interacted with a specific ITGB3 cis element and activated transcription of this gene during myeloid differentiation. We also found that increased fibronectin adhesion in differentiating myeloid cells was dependent upon this HoxA10-induced increase in β3 integrin expression. We determined that activation of ITGB3 transcription required a HoxA10 domain that was not identical to the “hexapeptide” that mediates interaction of Hox and Pbx proteins. This activation domain was also not identical to a previously identified HoxA10 repression domain that mediates interaction with transcriptional co-repressors. Instead, this HoxA10 activation domain had homology to “PQ” protein-protein interaction domains that have been described previously in other transcription factors. Consistent with this, we found that the HoxA10 PQ-like domain recruited the CREB-binding protein (CBP) to the ITGB3 promoter. This was associated with an increase in local histone acetylation in vivo. In immature myeloid cells, we previously determined that HoxA10 repressed transcription of the CYBB and NCF2 genes, which encode the phagocyte oxidase proteins gp91PHOX and p67PHOX, respectively. Therefore, our studies indicated that HoxA10 either activates or represses gene transcription at various points during myelopoiesis. Our studies also suggested that HoxA10 is a bifunctional protein that is involved in dynamic regulation of multiple aspects of phagocyte phenotype and function.

Collaboration


Dive into the Elizabeth A. Eklund's collaboration.

Top Co-Authors

Avatar

Weiqi Huang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Ling Bei

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Wang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunliu Zhu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge