Elizabeth A. Holland
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth A. Holland.
Cancer Research | 2006
Alisa M. Goldstein; May Chan; Mark Harland; Elizabeth M. Gillanders; Nicholas K. Hayward; Marie-Françoise Avril; Esther Azizi; Giovanna Bianchi-Scarrà; D. Timothy Bishop; Brigitte Bressac-de Paillerets; William Bruno; Donato Calista; Lisa A. Cannon Albright; Florence Demenais; David E. Elder; Paola Ghiorzo; Nelleke A. Gruis; Johan Hansson; David Hogg; Elizabeth A. Holland; Peter A. Kanetsky; Richard F. Kefford; Maria Teresa Landi; Julie Lang; Sancy A. Leachman; Rona M. MacKie; Veronica Magnusson; Graham J. Mann; Kristin B. Niendorf; Julia A. Newton Bishop
GenoMEL, comprising major familial melanoma research groups from North America, Europe, Asia, and Australia has created the largest familial melanoma sample yet available to characterize mutations in the high-risk melanoma susceptibility genes CDKN2A/alternate reading frames (ARF), which encodes p16 and p14ARF, and CDK4 and to evaluate their relationship with pancreatic cancer (PC), neural system tumors (NST), and uveal melanoma (UM). This study included 466 families (2,137 patients) with at least three melanoma patients from 17 GenoMEL centers. Overall, 41% (n = 190) of families had mutations; most involved p16 (n = 178). Mutations in CDK4 (n = 5) and ARF (n = 7) occurred at similar frequencies (2-3%). There were striking differences in mutations across geographic locales. The proportion of families with the most frequent founder mutation(s) of each locale differed significantly across the seven regions (P = 0.0009). Single founder CDKN2A mutations were predominant in Sweden (p.R112_L113insR, 92% of familys mutations) and the Netherlands (c.225_243del19, 90% of familys mutations). France, Spain, and Italy had the same most frequent mutation (p.G101W). Similarly, Australia and United Kingdom had the same most common mutations (p.M53I, c.IVS2-105A>G, p.R24P, and p.L32P). As reported previously, there was a strong association between PC and CDKN2A mutations (P < 0.0001). This relationship differed by mutation. In contrast, there was little evidence for an association between CDKN2A mutations and NST (P = 0.52) or UM (P = 0.25). There was a marginally significant association between NST and ARF (P = 0.05). However, this particular evaluation had low power and requires confirmation. This GenoMEL study provides the most extensive characterization of mutations in high-risk melanoma susceptibility genes in families with three or more melanoma patients yet available.
Nature | 2011
Satoru Yokoyama; Susan L. Woods; Glen M. Boyle; Lauren G. Aoude; Stuart Macgregor; Victoria Zismann; Michael Gartside; Anne E. Cust; Rizwan Haq; Mark Harland; John C. Taylor; David L. Duffy; Kelly Holohan; Ken Dutton-Regester; Jane M. Palmer; Vanessa F. Bonazzi; Mitchell S. Stark; Judith Symmons; Matthew H. Law; Christopher W. Schmidt; Cathy Lanagan; Linda O’Connor; Elizabeth A. Holland; Helen Schmid; Judith A. Maskiell; Jodie Jetann; Megan Ferguson; Mark A. Jenkins; Richard F. Kefford; Graham G. Giles
So far, two genes associated with familial melanoma have been identified, accounting for a minority of genetic risk in families. Mutations in CDKN2A account for approximately 40% of familial cases, and predisposing mutations in CDK4 have been reported in a very small number of melanoma kindreds. Here we report the whole-genome sequencing of probands from several melanoma families, which we performed in order to identify other genes associated with familial melanoma. We identify one individual carrying a novel germline variant (coding DNA sequence c.G1075A; protein sequence p.E318K; rs149617956) in the melanoma-lineage-specific oncogene microphthalmia-associated transcription factor (MITF). Although the variant co-segregated with melanoma in some but not all cases in the family, linkage analysis of 31 families subsequently identified to carry the variant generated a log of odds (lod) score of 2.7 under a dominant model, indicating E318K as a possible intermediate risk variant. Consistent with this, the E318K variant was significantly associated with melanoma in a large Australian case–control sample. Likewise, it was similarly associated in an independent case–control sample from the United Kingdom. In the Australian sample, the variant allele was significantly over-represented in cases with a family history of melanoma, multiple primary melanomas, or both. The variant allele was also associated with increased naevus count and non-blue eye colour. Functional analysis of E318K showed that MITF encoded by the variant allele had impaired sumoylation and differentially regulated several MITF targets. These data indicate that MITF is a melanoma-predisposition gene and highlight the utility of whole-genome sequencing to identify novel rare variants associated with disease susceptibility.
Journal of Medical Genetics | 2006
Alisa M. Goldstein; May Chan; Mark Harland; Nicholas K. Hayward; Florence Demenais; D. Timothy Bishop; Esther Azizi; Wilma Bergman; Giovanna Bianchi-Scarrà; William Bruno; Donato Calista; Lisa A. Cannon Albright; Valérie Chaudru; Agnès Chompret; Francisco Cuellar; David E. Elder; Paola Ghiorzo; Elizabeth M. Gillanders; Nelleke A. Gruis; Johan Hansson; David Hogg; Elizabeth A. Holland; Peter A. Kanetsky; Richard F. Kefford; Maria Teresa Landi; Julie Lang; Sancy A. Leachman; Rona M. MacKie; Veronica Magnusson; Graham J. Mann
Background: The major factors individually reported to be associated with an increased frequency of CDKN2A mutations are increased number of patients with melanoma in a family, early age at melanoma diagnosis, and family members with multiple primary melanomas (MPM) or pancreatic cancer. Methods: These four features were examined in 385 families with ⩾3 patients with melanoma pooled by 17 GenoMEL groups, and these attributes were compared across continents. Results: Overall, 39% of families had CDKN2A mutations ranging from 20% (32/162) in Australia to 45% (29/65) in North America to 57% (89/157) in Europe. All four features in each group, except pancreatic cancer in Australia (p = 0.38), individually showed significant associations with CDKN2A mutations, but the effects varied widely across continents. Multivariate examination also showed different predictors of mutation risk across continents. In Australian families, ⩾2 patients with MPM, median age at melanoma diagnosis ⩽40 years and ⩾6 patients with melanoma in a family jointly predicted the mutation risk. In European families, all four factors concurrently predicted the risk, but with less stringent criteria than in Australia. In North American families, only ⩾1 patient with MPM and age at diagnosis ⩽40 years simultaneously predicted the mutation risk. Conclusions: The variation in CDKN2A mutations for the four features across continents is consistent with the lower melanoma incidence rates in Europe and higher rates of sporadic melanoma in Australia. The lack of a pancreatic cancer–CDKN2A mutation relationship in Australia probably reflects the divergent spectrum of mutations in families from Australia versus those from North America and Europe. GenoMEL is exploring candidate host, genetic and/or environmental risk factors to better understand the variation observed.
Nature Genetics | 2008
Kevin M. Brown; Stuart Macgregor; Grant W. Montgomery; David Craig; Zhen Zhen Zhao; Kelly Iyadurai; Anjali K. Henders; Nils Homer; Megan J. Campbell; Mitchell S. Stark; Shane Thomas; Helen Schmid; Elizabeth A. Holland; Elizabeth M. Gillanders; David L. Duffy; Judith A. Maskiell; Jodie Jetann; Megan Ferguson; Dietrich A. Stephan; Anne E. Cust; David C. Whiteman; Adèle C. Green; Håkan Olsson; Susana Puig; Paola Ghiorzo; Johan Hansson; Florence Demenais; Alisa M. Goldstein; Nelleke A. Gruis; David E. Elder
We conducted a genome-wide association pooling study for cutaneous melanoma and performed validation in samples totaling 2,019 cases and 2,105 controls. Using pooling, we identified a new melanoma risk locus on chromosome 20 (rs910873 and rs1885120), with replication in two further samples (combined P < 1 × 10−15). The per allele odds ratio was 1.75 (1.53, 2.01), with evidence for stronger association in early-onset cases.
Genes, Chromosomes and Cancer | 1999
Elizabeth A. Holland; Helen Schmid; Richard F. Kefford; Graham J. Mann
Mutation analysis of two genes involved in melanoma susceptibility (CDKN2A/p16INK4a and CDK4) was undertaken in 131 probands with a family history of melanoma. Screening of all three exons of CDKN2A and exon 2 of CDK4 by single‐strand conformation polymorphism (SSCP) analysis and/or direct sequencing identified a total of 10 different CDKN2A germline mutations, including 6 not previously described in the germline. All but one has been previously proven to, or is likely to, affect the structure and function of p16INK4a. The incidence of CDKN2A mutation was 8.4% (11/131), but was significantly higher in families with three or more cases of melanoma (10/66, 15.1%) than in those in which only two relatives were affected (1/65, 1.5%). The incidence of CDKN2A mutation was also higher in families with three or more cases of melanoma and at least one member with multiple primary melanomas (6/19, 31.6%) than in similar families without multiple primary melanomas (4/47, 8.5%). One novel CDK4 variant of uncertain significance was found in a kindred that also carries a CDKN2A mutation. Genes Chromosomes Cancer 25:339–348, 1999.
American Journal of Human Genetics | 2003
Elizabeth M. Gillanders; Suh-Hang Hank Juo; Elizabeth A. Holland; MaryPat Jones; Derek J. Nancarrow; Diana Freas-Lutz; Raman Sood; Naeun Park; Mezbah U. Faruque; Carol Markey; Richard F. Kefford; Jane M. Palmer; Wilma Bergman; D. Timothy Bishop; Margaret A. Tucker; Brigitte Bressac-de Paillerets; Johan Hansson; Mitchell S. Stark; Nelleke A. Gruis; Julia A. Newton Bishop; Alisa M. Goldstein; Joan E. Bailey-Wilson; Graham J. Mann; Nicholas K. Hayward; Jeffrey M. Trent
Over the past 20 years, the incidence of cutaneous malignant melanoma (CMM) has increased dramatically worldwide. A positive family history of the disease is among the most established risk factors for CMM; it is estimated that 10% of CMM cases result from an inherited predisposition. Although mutations in two genes, CDKN2A and CDK4, have been shown to confer an increased risk of CMM, they account for only 20%-25% of families with multiple cases of CMM. Therefore, to localize additional loci involved in melanoma susceptibility, we have performed a genomewide scan for linkage in 49 Australian pedigrees containing at least three CMM cases, in which CDKN2A and CDK4 involvement has been excluded. The highest two-point parametric LOD score (1.82; recombination fraction [theta] 0.2) was obtained at D1S2726, which maps to the short arm of chromosome 1 (1p22). A parametric LOD score of 4.65 (theta=0) and a nonparametric LOD score of 4.19 were found at D1S2779 in nine families selected for early age at onset. Additional typing yielded seven adjacent markers with LOD scores >3 in this subset, with the highest parametric LOD score, 4.95 (theta=0) (nonparametric LOD score 5.37), at D1S2776. Analysis of 33 additional multiplex families with CMM from several continents provided further evidence for linkage to the 1p22 region, again strongest in families with the earliest mean age at diagnosis. A nonparametric ordered sequential analysis was used, based on the average age at diagnosis in each family. The highest LOD score, 6.43, was obtained at D1S2779 and occurred when the 15 families with the earliest ages at onset were included. These data provide significant evidence of a novel susceptibility gene for CMM located within chromosome band 1p22.
Nature Genetics | 2011
Stuart Macgregor; Grant W. Montgomery; Jimmy Z. Liu; Zhen Zhen Zhao; Anjali K. Henders; Mitchell S. Stark; Helen Schmid; Elizabeth A. Holland; David L. Duffy; Mingfeng Zhang; Jodie N. Painter; Dale R. Nyholt; Judith A. Maskiell; Jodie Jetann; Megan Ferguson; Anne E. Cust; Mark A. Jenkins; David C. Whiteman; Håkan Olsson; Susana Puig; Giovanna Bianchi-Scarrà; Johan Hansson; Florence Demenais; Maria Teresa Landi; Tadeusz Dębniak; Rona MacKie; Esther Azizi; Brigitte Bressac-de Paillerets; Alisa M. Goldstein; Peter A. Kanetsky
We performed a genome-wide association study of melanoma in a discovery cohort of 2,168 Australian individuals with melanoma and 4,387 control individuals. In this discovery phase, we confirm several previously characterized melanoma-associated loci at MC1R, ASIP and MTAP–CDKN2A. We selected variants at nine loci for replication in three independent case-control studies (Europe: 2,804 subjects with melanoma, 7,618 control subjects; United States 1: 1,804 subjects with melanoma, 1,026 control subjects; United States 2: 585 subjects with melanoma, 6,500 control subjects). The combined meta-analysis of all case-control studies identified a new susceptibility locus at 1q21.3 (rs7412746, P = 9.0 × 10−11, OR in combined replication cohorts of 0.89 (95% CI 0.85–0.95)). We also show evidence suggesting that melanoma associates with 1q42.12 (rs3219090, P = 9.3 × 10−8). The associated variants at the 1q21.3 locus span a region with ten genes, and plausible candidate genes for melanoma susceptibility include ARNT and SETDB1. Variants at the 1q21.3 locus do not seem to be associated with human pigmentation or measures of nevus density.
Genes, Chromosomes and Cancer | 2000
Mark Harland; Elizabeth A. Holland; Paola Ghiorzo; Michela Mantelli; Giovanna Bianchi-Scarrà; Alisa M. Goldstein; Margaret A. Tucker; Bruce A.J. Ponder; Graham J. Mann; D. Timothy Bishop; Julia A. Newton Bishop
Germline mutations of CDKN2A, at 9p21, are responsible for predisposition to melanoma in some families. However, evidence of linkage to 9p21 has been demonstrated in a significant proportion of kindreds with no detectable mutations in CDKN2A. It is possible that mutations in noncoding regions may be responsible for predisposition to melanoma in these families. We have analyzed approximately 1 kb of the CDKN2A promoter upstream of the start codon in an attempt to identify causal mutations in 107 melanoma families. Four sequence variants were detected. Two of these (A‐191G and A‐493T) did not segregate with disease and were present in a control population at a comparable frequency, indicating that they are unlikely to predispose to melanoma. The A‐493T variant appeared to be in linkage disequilibrium with the previously described CDKN2A polymorphism Ala148Thr. The variant G‐735A was detected in the control population, but segregation of this variant with melanoma within families could not be discounted. The fourth variant (G‐34T), located in the 5′ UTR, creates an aberrant initiation codon. This variant appeared to segregate with melanoma and was not detected in a control population. G‐34T has recently been identified in a subset of Canadian melanoma families and was concluded to be associated with predisposition to melanoma. The creation of an aberrant initiation site in the 5′ UTR may have an important role in carcinogenesis in a small percentage of families; however, mutations in the CDKN2A promoter appear to have a limited role in predisposition to melanoma. Genes Chromosomes Cancer 28:45–57, 2000.
Journal of the National Cancer Institute | 2010
Florence Demenais; Hamida Mohamdi; Valérie Chaudru; Alisa M. Goldstein; J.A. Newton Bishop; D. T. Bishop; Peter A. Kanetsky; Nicholas K. Hayward; Elizabeth M. Gillanders; David E. Elder; M.-F. Avril; Esther Azizi; P. Van Belle; Wilma Bergman; Giovanna Bianchi-Scarrà; B. Bressac-de Paillerets; Donato Calista; Cristina Carrera; Johan Hansson; Mark Harland; David Hogg; Veronica Höiom; Elizabeth A. Holland; Christian Ingvar; M. T. Landi; Julie Lang; R. M. Mackie; Graham J. Mann; M. E. Ming; C. J. Njauw
Background Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited. Methods We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided. Results Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02). Conclusion Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.
American Journal of Epidemiology | 2009
Anne E. Cust; Helen Schmid; Judith A. Maskiell; Jodie Jetann; Megan Ferguson; Elizabeth A. Holland; Chantelle Agha-Hamilton; Mark A. Jenkins; John W. Kelly; Richard F. Kefford; Graham G. Giles; Bruce K. Armstrong; Joanne F. Aitken; John L. Hopper; Graham J. Mann
Discovering and understanding genetic risk factors for melanoma and their interactions with phenotype, sun exposure, and other risk factors could lead to new strategies for melanoma control. This paper describes the Australian Melanoma Family Study, which uses a multicenter, population-based, case-control-family design. From 2001 to 2005, the authors recruited 1,164 probands including 629 cases with histopathologically confirmed, first-primary cutaneous melanoma diagnosed before age 40 years, 240 population-based controls frequency matched for age, and 295 spouse/friend controls. Information on lifetime sun exposure, phenotype, and residence history was collected for probands and nearly 4,000 living relatives. More than 3,000 subjects donated a blood sample. Proxy-reported information was collected for childhood sun exposure and deceased relatives. Important features of this study include the population-based, family-based design; a focus on early onset disease; probands from 3 major cities differing substantially in solar ultraviolet exposure and melanoma incidence; a population at high risk because of high ultraviolet exposure and susceptible pigmentation phenotypes; population-based, spouse/friend, and sibling controls; systematic recruitment of relatives of case and control probands; self and parent reports of childhood sun exposure; and objective clinical skin examinations. The authors discuss methodological and analytical issues related to the study design and conduct, as well as the potentially novel insights the study can deliver.