Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Hurd is active.

Publication


Featured researches published by Elizabeth A. Hurd.


Current Biology | 2004

Polarity Proteins Control Ciliogenesis via Kinesin Motor Interactions

Shuling Fan; Toby W. Hurd; Chia Jen Liu; Samuel W. Straight; Thomas Weimbs; Elizabeth A. Hurd; Steven E. Domino; Ben Margolis

BACKGROUND Cilia are specialized organelles that play a fundamental role in several mammalian processes including left-right axis determination, sperm motility, and photoreceptor maintenance. Mutations in cilia-localized proteins have been linked to human diseases including cystic kidney disease and retinitis pigmentosa. Retinitis pigmentosa can be caused by loss-of-function mutations in the polarity protein Crumbs1 (CRB1), but the exact role of CRB1 in retinal function is unclear. RESULTS Here we show that CRB3, a CRB1-related protein found in epithelia, is localized to cilia and required for proper cilia formation. We also find that the Crumbs-associated Par3/Par6/aPKC polarity cassette localizes to cilia and regulates ciliogenesis. In addition, there appears to be an important role for the polarity-regulating 14-3-3 proteins in this process. Finally, we can demonstrate association of these polarity proteins with microtubules and the microtubular motor KIF3/Kinesin-II. CONCLUSIONS Our findings point to a heretofore unappreciated role for polarity proteins in cilia formation and provide a potentially unique insight into the pathogenesis of human kidney and retinal disease.


Mammalian Genome | 2007

Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues.

Elizabeth A. Hurd; Patrice L. Capers; Marsha N. Blauwkamp; Meredith E. Adams; Yehoash Raphael; Heather K. Poucher; Donna M. Martin

CHD7 is a novel chromodomain gene mutated in 60%–80% of humans with CHARGE syndrome, a multiple congenital anomaly condition characterized by ocular coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, and characteristic ear abnormalities including deafness. Phenotypic features of CHARGE are highly variable and incompletely penetrant. To explore developmental roles of CHD7, we generated mice carrying the Chd7Gt allele from a Chd7-deficient, gene-trapped lacZ reporter ES cell line. RT-PCR of embryo RNA demonstrated significantly reduced levels of wild-type transcript in Chd7Gt/Gt embryos. Chd7Gt/Gt embryos survive only up to embryonic day 10.5 (E10.5). Chd7Gt/+ male and female mice are viable, small, and exhibit variable degrees of head-bobbing and circling, consistent with vestibular dysfunction. Paint-filling of E16.5 heterozygous inner ears revealed defects of the semicircular canals. The pattern of β-galactosidase activity in Chd7Gt/+ embryos mimics Chd7 mRNA expression in wild-type embryos, confirming the fidelity of the lacZ reporter. We observed tissue-specific β-galactosidase in the E12.5 and E14.5 Chd7Gt/+ brain, pituitary, ear, heart, and craniofacial structures, indicating survival of Chd7Gt/+ cells in CHARGE-relevant organs. These studies demonstrate the utility of Chd7Gt as a reporter-tagged loss-of-function allele for future studies exploring developmental mechanisms of Chd7 deficiency.


Development | 2010

The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear

Elizabeth A. Hurd; Heather K. Poucher; Katherine Cheng; Yehoash Raphael; Donna M. Martin

Inner ear neurogenesis is positively regulated by the pro-neural bHLH transcription factors Ngn1 and NeuroD, but the factors that act upstream of this regulation are not well understood. Recent evidence in mouse and Drosophila suggests that neural development depends on proper chromatin remodeling, both for maintenance of neural stem cells and for proper neuronal differentiation. Here, we show that CHD7, an ATP-dependent chromatin remodeling enzyme mutated in human CHARGE syndrome, is necessary for proliferation of inner ear neuroblasts and inner ear morphogenesis. Conditional deletion of Chd7 in the developing otocyst using Foxg1-Cre resulted in cochlear hypoplasia and complete absence of the semicircular canals and cristae. Conditional knockout and null otocysts also had reductions in vestibulo-cochlear ganglion size and neuron number in combination with reduced expression of Ngn1, Otx2 and Fgf10, concurrent with expansion of the neural fate suppressor Tbx1 and reduced cellular proliferation. Heterozygosity for Chd7 mutations had no major effects on expression of otic patterning genes or on cell survival, but resulted in decreased proliferation within the neurogenic domain. These data indicate that epigenetic regulation of gene expression by CHD7 must be tightly coordinated for proper development of inner ear neuroblasts.


Human Molecular Genetics | 2010

CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis.

Gabriel E. Zentner; Elizabeth A. Hurd; Michael P. Schnetz; Lusy Handoko; Chuanping Wang; Zhenghe Wang; Chialin Wei; Paul J. Tesar; Maria Hatzoglou; Donna M. Martin; Peter C. Scacheri

De novo mutation of the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7) is the primary cause of CHARGE syndrome, a complex developmental disorder characterized by the co-occurrence of a specific set of birth defects. Recent studies indicate that CHD7 functions as a transcriptional regulator in the nucleoplasm. Here, we report based on immunofluorescence and western blotting of subcellular fractions that CHD7 is also constitutively localized to the nucleolus, the site of rRNA transcription. Standard chromatin immunoprecipitation (ChIP) assays indicate that CHD7 physically associates with rDNA, a result that is also observable upon alignment of whole-genome CHD7 ChIP coupled with massively parallel DNA sequencing data to the rDNA reference sequence. ChIP-chop analyses demonstrate that CHD7 specifically associates with hypomethylated, active rDNA, suggesting a role as a positive regulator of rRNA synthesis. Consistent with this hypothesis, siRNA-mediated depletion of CHD7 results in hypermethylation of the rDNA promoter and a concomitant reduction of 45S pre-rRNA levels. Accordingly, cells overexpressing CHD7 show increased levels of 45S pre-rRNA compared with control cells. Depletion of CHD7 also reduced cell proliferation and protein synthesis. Lastly, compared with wild-type ES cells, the levels of 45S pre-rRNA are reduced in both Chd7(+/-) and Chd7(-/-) mouse ES cells, as well as in Chd7(-/-) whole mouse embryos and multiple tissues dissected from Chd7(+/-) embryos. Together with previously published studies, these results indicate that CHD7 dually functions as a regulator of both nucleoplasmic and nucleolar genes and provide a novel avenue for investigation into the pathogenesis of CHARGE syndrome.


Human Molecular Genetics | 2011

Reproductive dysfunction and decreased GnRH neurogenesis in a mouse model of CHARGE syndrome

Wanda S. Layman; Elizabeth A. Hurd; Donna M. Martin

CHARGE is a multiple congenital anomaly disorder and a common cause of pubertal defects, olfactory dysfunction, growth delays, deaf-blindness, balance disorders and congenital heart malformations. Mutations in CHD7, the gene encoding chromodomain helicase DNA binding protein 7, are present in 60-80% of individuals with the CHARGE syndrome. Mutations in CHD7 have also been reported in the Kallmann syndrome (olfactory dysfunction, delayed puberty and hypogonadotropic hypogonadism). CHD7 is a positive regulator of neural stem cell proliferation and olfactory sensory neuron formation in the olfactory epithelium, suggesting that the loss of CHD7 might also disrupt development of other neural populations. Here we report that female Chd7(Gt/+) mice have delays in vaginal opening and estrus onset, and erratic estrus cycles. Chd7(Gt/+) mice also have decreased circulating levels of luteinizing hormone and follicle-stimulating hormone but apparently normal responsiveness to gonadotropin-releasing hormone (GnRH) agonist and antagonist treatment. GnRH neurons in the adult Chd7(Gt/+) hypothalamus and embryonic nasal region are diminished, and there is decreased cellular proliferation in the embryonic olfactory placode. Expression levels of GnRH1 and Otx2 in the hypothalamus and GnRHR in the pituitary are significantly reduced in adult Chd7(Gt/+) mice. Additionally, Chd7 mutant embryos have CHD7 dosage-dependent reductions in expression levels of Fgfr1, Bmp4 and Otx2 in the olfactory placode. Together, these data suggest that CHD7 has critical roles in the development and maintenance of GnRH neurons for regulating puberty and reproduction.


Clinical Genetics | 2010

Chromodomain Proteins in Development: Lessons from CHARGE Syndrome

Wanda S. Layman; Elizabeth A. Hurd; Donna M. Martin

Layman WS, Hurd EA, Martin DM. Chromodomain proteins in development: lessons from CHARGE syndrome.


The Journal of Comparative Neurology | 2007

Defects in Vestibular Sensory Epithelia and Innervation in Mice with Loss of Chd7 Function: Implications for Human CHARGE Syndrome

Meredith E. Adams; Elizabeth A. Hurd; Lisa A. Beyer; Donald L. Swiderski; Yehoash Raphael; Donna M. Martin

CHD7 is a chromodomain gene mutated in CHARGE syndrome, a multiple anomaly condition characterized by ocular coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, and ear defects including deafness and semicircular canal dysgenesis. Mice with heterozygous Chd7 deficiency have circling behavior and semicircular canal defects and are an excellent animal model for exploring the pathogenesis of CHARGE features. Inner ear vestibular defects have been characterized in heterozygous Chd7‐deficient embryos and early postnatal mice, but it is not known whether vestibular defects persist throughout adulthood in Chd7‐deficient mice or whether the vestibular sensory epithelia and their associated innervation and function are intact. Here we describe a detailed analysis of inner ear vestibular structures in mature mice that are heterozygous for a Chd7‐deficient, gene‐trapped allele (Chd7Gt/+). Chd7Gt/+ mice display variable asymmetric lateral and posterior semicircular canal malformations, as well as defects in vestibular sensory epithelial innervation despite the presence of intact hair cells in the target organs. These observations have important functional implications for understanding the clinical manifestations of CHD7 mutations in humans and for designing therapies to treat inner ear vestibular dysfunction. J. Comp. Neurol. 504:519–532, 2007.


Infection and Immunity | 2004

Increased Susceptibility of Secretor Factor Gene Fut2-Null Mice to Experimental Vaginal Candidiasis

Elizabeth A. Hurd; Steven E. Domino

ABSTRACT Fut2-LacZ-null mice, which are a model of the human ABO and Lewis nonsecretor group, display increased susceptibility to experimental yeast vaginitis, indicating a role for α(1,2)fucosylated cervical glycans in mucosal defense. However, the lack of significant effect of competitive inhibition by exogenous neoglycoproteins in this study emphasizes the complexity of Candida-epithelial cell adhesion events.


Human Molecular Genetics | 2014

CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome

Joseph A. Micucci; Wanda S. Layman; Elizabeth A. Hurd; Ethan D. Sperry; Sophia F. Frank; Mark A. Durham; Donald L. Swiderski; Jennifer M. Skidmore; Peter C. Scacheri; Yehoash Raphael; Donna M. Martin

CHARGE syndrome is a multiple congenital anomaly disorder that leads to life-threatening birth defects, such as choanal atresia and cardiac malformations as well as multiple sensory impairments, that affect hearing, vision, olfaction and balance. CHARGE is caused by heterozygous mutations in CHD7, which encodes an ATP-dependent chromatin remodeling enzyme. Identification of the mechanisms underlying neurological and sensory defects in CHARGE is a first step toward developing treatments for CHARGE individuals. Here, we used mouse models of Chd7 deficiency to explore the function of CHD7 in the development of the subventricular zone (SVZ) neural stem cell niche and inner ear, structures that are important for olfactory bulb neurogenesis and hearing and balance, respectively. We found that loss of Chd7 results in cell-autonomous proliferative, neurogenic and self-renewal defects in the perinatal and mature mouse SVZ stem cell niche. Modulation of retinoic acid (RA) signaling prevented in vivo inner ear and in vitro neural stem cell defects caused by Chd7 deficiency. Our findings demonstrate critical, cooperative roles for RA and CHD7 in SVZ neural stem cell function and inner ear development, suggesting that altered RA signaling may be an effective method for treating Chd7 deficiency.


Glycoconjugate Journal | 2009

Cervical Mucins Carry α(1,2)Fucosylated Glycans that Partly Protect from Experimental Vaginal Candidiasis

Steven E. Domino; Elizabeth A. Hurd; Kristina A. Thomsson; David Karnak; Jessica M. Holmén Larsson; Elisabeth Thomsson; Malin Bäckström; Gunnar C. Hansson

Cervical mucins are glycosylated proteins that form a protective cervical mucus. To understand the role of mucin glycans in Candida albicans infection, oligosaccharides from mouse cervical mucins were analyzed by liquid chromatography-mass spectrometry. Cervical mucins carry multiple α(1-2)fucosylated glycans, but α(1,2)fucosyltransferase Fut2-null mice are devoid of these epitopes. Epithelial cells in vaginal lavages from Fut2-null mice lacked Ulex europaeus agglutinin-1 (UEA-I) staining for α(1-2)fucosylated glycans. Hysterectomy to remove cervical mucus eliminated UEA-I and acid mucin staining in vaginal epithelial cells from wild type mice indicating the cervix as the source of UEA-I positive epithelial cells. To assess binding of α(1-2) fucosylated glycans on C. albicans infection, an in vitro adhesion assay was performed with vaginal epithelial cells from wild type and Fut2-null mice. Vaginal epithelial cells from Fut2-null mice were found to bind increased numbers of C. albicans compared to vaginal epithelial cells obtained from wild type mice. Hysterectomy lessened the difference between Fut2-null and wild type mice in binding of C. ablicans in vitro and susceptibility to experimental C. albicans vaginitis in vivo. We generated a recombinant fucosylated MUC1 glycanpolymer to test whether the relative protection of wild type mice compared to Fut2-null mice could be mimicked with exogenous mucin. While a small portion of the recombinant MUC1 epitopes displayed α(1-2)fucosylated glycans, the predominant epitopes were sialylated due to endogenous sialyltransferases in the cultured cells. Intravaginal instillation of recombinant MUC1 glycanpolymer partially reduced experimental yeast vaginitis suggesting that a large glycanpolymer, with different glycan epitopes, may affect fungal burden.

Collaboration


Dive into the Elizabeth A. Hurd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yehoash Raphael

Kresge Hearing Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge