Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Kulikova is active.

Publication


Featured researches published by Elizabeth A. Kulikova.


Behavioural Brain Research | 2013

Hereditary catalepsy in mice is associated with the brain dysmorphology and altered stress response

M. A. Tikhonova; A. V. Kulikov; D. V. Bazovkina; Elizabeth A. Kulikova; A. S. Tsybko; Ekaterina Y. Bazhenova; Vladimir S. Naumenko; Andrey E. Akulov; M. P. Moshkin; Nina K. Popova

Catalepsy is a passive defensive strategy in response to threatening stimuli. In exaggerated forms it is associated with brain dysfunctions. The study was aimed to examine (1) possible association of the hereditary catalepsy with neuroanatomical characteristics and (2) sensitivity of the catalepsy expression, HPA and brain serotonin (5-HT) systems to restraint stress (for one hour) in mice of catalepsy-prone (CBA/Lac, ASC (Antidepressant Sensitive Catalepsy), congenic AKR.CBA-D13M76) and catalepsy-resistant (AKR/J) strains. Magnetic resonance imaging showed that the catalepsy-prone mice were characterized by the smaller size of the pituitary gland and the larger size of the thalamus. In ASC mice, diencephalon region (including hypothalamus) and striatum were significantly reduced in size. Restraint stress provoked catalepsy in AKR mice and enhanced it in the catalepsy-prone mice. Stress-induced corticosterone elevation was diminished, while 5-HT metabolism (5-HIAA level or 5-HIAA/5-HT ratio) in the midbrain was significantly augmented by stress in the catalepsy-prone mice. The multivariate factor analysis revealed interactions between the basal levels and the stress-induced alterations of 5-HT metabolism in the hippocampus and midbrain suggesting the interaction between multiple alterations in 5-HT neurotransmission in several brain structures in the regulation of hereditary catalepsy. The study indicated an association between the hereditary catalepsy, neuroanatomical characteristics, and neurochemical responses to emotional stress. The catalepsy-prone genotypes seem to be more susceptible to stress that suggests them as the adequate models to study the genetic predisposition to stress-based neuropathology. The data support the association of hereditary catalepsy with the inherited brain dysfunction of a neurodegenerative nature.


Behavioural Brain Research | 2016

Knockout Zbtb33 gene results in an increased locomotion, exploration and pre-pulse inhibition in mice.

A. V. Kulikov; Valeria S. Korostina; Elizabeth A. Kulikova; Dariya V. Fursenko; Andrey E. Akulov; M. P. Moshkin; Egor Prokhortchouk

The Zbtb33 gene encodes the Kaiso protein-a bimodal transcriptional repressor. Here, the effects of Zbtb33 gene disruption on the brain and behaviour of the Kaiso-deficient (KO) and C57BL/6 (WT) male mice were investigated. Behaviour was studied using the open field, novel object, elevated plus maze and acoustic startle reflex tests. Brain morphology was investigated with magnetic resonance imaging. Biogenic amine levels and gene expression in the brain were measured with high-performance liquid chromatography and quantitative real-time RT-PCR, respectively. Zbtb33 gene mRNA was not detected in the brain of KO mice. KO mice exhibited increased locomotion, exploration in the open field, novel object and elevated plus-maze test. At the same time, Zbtb33 gene disruption did not alter anxiety-related behaviour in the elevated plus-maze test. KO mice showed elevated amplitudes and pre-pulse inhibitions of the acoustic startle reflex. These behavioural alterations were accompanied by significant reductions in the volumes of the lateral ventricles without significant alterations in the volumes of the hippocampus, striatum, thalamus and corpus callosum. Norepinephrine concentration was reduced in the hypothalami and hippocampi in KO mice, while the levels of serotonin, dopamine, their metabolites as well as mRNA of the gene coding brain-derived neurotrophic factor were not altered in the brain of KO mice compared to WT mice. This study is the first to reveal the involvement of the Zbtb33 gene in the regulation of behaviour and the central nervous system.


Neuroscience Letters | 2017

C1473G polymorphism in mouse tryptophan hydroxylase-2 gene in the regulation of the reaction to emotional stress

Ekaterina Y. Bazhenova; D. V. Bazovkina; Elizabeth A. Kulikova; Dariya V. Fursenko; Nikita V. Khotskin; Daria V. Lichman; A. V. Kulikov

Neurotransmitter serotonin (5-HT) is involved in the regulation of stress response. Tryptophan hydroxylase-2 (TPH2) is the key enzyme of serotonin (5-HT) synthesis in the brain. C1473G polymorphism in Tph2 gene is the main factor defining the enzyme activity in the brain of laboratory mice. The effect of interaction between C1473G polymorphism and 30min restriction stress on the behavior in the open field test, c-Fos gene expression and 5-HT metabolism in the brain in adult male of B6-1473C and B6-1473G congenic mouse lines with high and low TPH2 activity was investigated. A significant effect of genotype x stress interaction on c-Fos mRNA in the hypothalamus (F1,21=10.66, p<0.001) and midbrain (F1,21=9.18, p<0.01) was observed. The stress-induced rise of c-Fos mRNA in these structures is more intensive in B6-1473G than in B6-1473C mice. A marked effect of genotype x stress interaction on 5-HT level in the cortex (F1,18=9.38, p<0.01) and 5-HIAA/5-HT turnover rate in the hypothalamus (F1,18=9.01, p<0.01) was revealed. The restriction significantly decreased 5-HT level in the cortex (p<0.01) and increased 5-HIAA/5-HT rate (p<0.001) in the hypothalamus in B6-1473C mice, but not in B6-1473G mice. The present result is the first experimental evidence that C1473G polymorphism is involved in the regulation of the reaction to emotional stress in mice.


Pharmacological Research | 2016

5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production

Irina P. Voronova; G. M. Khramova; Elizabeth A. Kulikova; Dmitrii V. Petrovskii; D. V. Bazovkina; A. V. Kulikov

G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.


Neuroscience Research | 2017

Alteration of the brain morphology and the response to the acute stress in the recombinant mouse lines with different predisposition to catalepsy.

Elizabeth A. Kulikova; D. V. Bazovkina; Y.V. Antonov; Andrey E. Akulov; A. V. Kulikov; E. M. Kondaurova

Catalepsy is an inability to correct an externally imposed awkward posture; it is associated with schizophrenia and depression in human. We created new recombinant B6.CBA-D13Mit76C and B6.CBA-D13Mit76B mouse lines on the C57Bl/6 genome, carrying the 102.73-110.56Mbp fragment of chromosome 13 derived from the catalepsy-prone CBA strain and catalepsy-resistant C57BL/6 strain, respectively. We compared the behavior and brain morphology (11.7T BioSpec 117/16 USR tomograph, Germany) in these lines. The effects of acute emotional stress on corticosterones level in the blood and mRNA expression of Bdnf and Arc genes in the brain were investigated. The B6.CBA-D13Mit76B mice were non-cataleptic, while about 17% of B6.CBA-D13Mit76C mice demonstrated catalepsy-like immobility. No difference between these lines was revealed in the open field and social interaction tests. In the Morris water maze test, both lines effectively found the platform on the fourth day; however B6.CBA-D13Mit76B mice achieved significantly better results than cataleptic-prone animals. B6.CBA-D13Mit76C mice were characterized by decreased volume of the total brain and reduced sizes of striatum, cerebellum and pituitary gland. The both lines showed the similar basal and stress-induced levels of corticosterone, while the brain expression of Bdnf and Arc genes was more vulnerable to stress in the catalepsy-prone B6.CBA-D13Mit76C line.


Neuroscience Letters | 2017

The effect of long-term hindlimb unloading on the expression of risk neurogenes encoding elements of serotonin-, dopaminergic systems and apoptosis; comparison with the effect of actual spaceflight on mouse brain

Elizabeth A. Kulikova; Victor A. Kulikov; N. A. Sinyakova; A. V. Kulikov; Nina K. Popova

The study of spaceflight effects on the brain is technically complex concern; complicated by the problem of applying an adequate ground model. The most-widely used experimental model to study the effect of microgravity is the tail-suspension hindlimb unloading model; however, its compliance with the effect of actual spaceflight on the brain is still unclear. We evaluated the effect of one month hindlimb unloading on the expression of genes related to the brain neuroplasticity-brain neutotrophic factors (Gdnf, Cdnf), apoptotic factors (Bcl-xl, Bax), serotonin- and dopaminergic systems (5-HT2A, Maoa, Maob, Th, D1r, Comt), and compared the results with the data obtained on mice that spent one month in spaceflight on Russian biosatellite Bion-M1. No effect of hindlimb unloading was observed on the expression of most genes, which were considered as risk neurogenes for long-term actual spaceflight. The opposite effect of hindlimb unloading and spaceflight was found on the level of mRNA of D1 dopamine receptor and catechol-O-methyltransferase in the striatum. At the same time, the expression of Maob in the midbrain decreased, and the expression of Bcl-xl genes increased in the hippocampus, which corresponds to the effect of spaceflight. However, the hindlimb unloading model failed to reproduce the majority of effects of long-term spaceflight on serotonin-, dopaminergic systems and some apoptotic factors.


Neuroscience Letters | 2017

No effect of C1473G polymorphism in the tryptophan hydroxylase 2 gene on the response of the brain serotonin system to chronic fluoxetine treatment in mice

Ekaterina Y. Bazhenova; Nadezhda A. Sinyakova; Elizabeth A. Kulikova; Irina A. Kazarinova; D. V. Bazovkina; Raul R. Gainetdinov; A. V. Kulikov

Selective serotonin reuptake inhibitors (SSRIs) are antidepressants that block serotonin transporter (SERT) and increase serotonin (5-HT) level in the synaptic cleft. The interaction between SERT and the key enzyme of 5-HT synthesis in the brain, tryptophan hydroxylase 2 (TPH2), is essential to maintain the brain 5-HT level. The G allele of C1473G polymorphism in Tph2 gene decreases enzyme activity by half in mouse brain. Here we studied effect of C1473G polymorphism on the reaction of brain 5-HT system to chronic fluoxetine treatment (120mg/l in drinking water, for 3 weeks) in adult males of the congenic B6-1473C and B6-1473G mouse lines with high and low enzyme activity, respectively. The polymorphism did not affect the levels of 5-HT, its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and Tph2 gene mRNA in the brain. Fluoxetine significantly attenuated 5-HT levels in the cortex and striatum, 5-HIAA concentrations in the cortex, hippocampus, striatum and midbrain, and Tph2 gene expression in the midbrain. However, we did not observed any effect of the genotype x treatment interaction on these neurochemical characteristics. Therefore, C1473G polymorphism does not seem to play an essential role in the reaction of the brain 5-HT system to chronic fluoxetine treatment.


Genes, Brain and Behavior | 2016

Interplay between aggression, brain monoamines and fur color mutation in the American mink.

A. V. Kulikov; Ekaterina Y. Bazhenova; Elizabeth A. Kulikova; Fursenko Dv; Trapezova Li; Terenina Ee; Mormede P; Nina K. Popova; Trapezov Ov

Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (−2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild‐type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (−1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (−2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5‐hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks.


British Journal of Pharmacology | 2016

Alterations in pharmacological and behavioural responses in recombinant mouse line with an increased predisposition to catalepsy: role of the 5-HT1A receptor

Elizabeth A. Kulikova; D. V. Bazovkina; Andrey E. Akulov; A. S. Tsybko; Dariya V. Fursenko; A. V. Kulikov; Vladimir S. Naumenko; Evgeni Ponimaskin; E. M. Kondaurova

One important syndrome of psychiatric disorders in humans is catalepsy. Here, we created mice with different predispositions to catalepsy and analysed their pharmacological and behavioural properties.


Bulletin of Experimental Biology and Medicine | 2018

Effects of Fluoxetine and Potential Antidepressant 8-Trifluoromethyl 1,2,3,4,5-Benzopentathiepin-6-Amine Hydrochloride (TC-2153) on Behavior of Danio rerio Fish in the Novel Tank Test and Brain Content of Biogenic Amines and Their Metabolites

N. A. Sinyakova; Elizabeth A. Kulikova; N. A. Englevskii; A. V. Kulikov

We compared the effect of a new potential antidepressant 8-trifluoromethyl 1,2,3,4,5-benzopentathiepine-6-amine hydrochloride (TC-2153) and classical antidepressant fluoxetine in a dose of 0.25 mg/liter on the behavior of Danio rerio in the “novel tank” test and content of biogenic amines and their metabolites in the brain. Fluoxetine alone and TC-2153 alone significantly increased the time spent in the upper part of the tank and insignificantly reduced motor activity. Combined exposure of fishes in the solution containing potential and classical antidepressants potentiated their effects on both parameters. The compounds did not affect brain contents of serotonin, dopamine, and norepinephrine. At the same time, fluoxetine, but not TC-2153, reduced brain content of the main serotonin metabolite 5-hydroxyindole acetic acid.

Collaboration


Dive into the Elizabeth A. Kulikova's collaboration.

Top Co-Authors

Avatar

A. V. Kulikov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

D. V. Bazovkina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Andrey E. Akulov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nina K. Popova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. S. Tsybko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dariya V. Fursenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. M. Kondaurova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

M. P. Moshkin

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge