Elizabeth A. Ottesen
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth A. Ottesen.
Nature | 2007
Falk Warnecke; Peter Luginbühl; Natalia Ivanova; Majid Ghassemian; Toby Richardson; Justin T. Stege; Michelle Cayouette; Alice C. McHardy; Gordana Djordjevic; Nahla Aboushadi; Rotem Sorek; Susannah G. Tringe; Mircea Podar; Hector Garcia Martin; Victor Kunin; Daniel Dalevi; Julita Madejska; Edward Kirton; Darren Platt; Ernest Szeto; Asaf Salamov; Kerrie Barry; Natalia Mikhailova; Nikos C. Kyrpides; Eric G. Matson; Elizabeth A. Ottesen; Xinning Zhang; Myriam Hernández; Catalina Murillo; Luis G. Acosta
From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding ‘higher’ Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-μl environment can be.
Science | 2006
Elizabeth A. Ottesen; Jong Wook Hong; Stephen R. Quake; Jared R. Leadbetter
Gene inventory and metagenomic techniques have allowed rapid exploration of bacterial diversity and the potential physiologies present within microbial communities. However, it remains nontrivial to discover the identities of environmental bacteria carrying two or more genes of interest. We have used microfluidic digital polymerase chain reaction (PCR) to amplify and analyze multiple, different genes obtained from single bacterial cells harvested from nature. A gene encoding a key enzyme involved in the mutualistic symbiosis occurring between termites and their gut microbiota was used as an experimental hook to discover the previously unknown ribosomal RNA–based species identity of several symbionts. The ability to systematically identify bacteria carrying a particular gene and to link any two or more genes of interest to single species residing in complex ecosystems opens up new opportunities for research on the environment.
The ISME Journal | 2010
Frank J. Stewart; Elizabeth A. Ottesen; Edward F. DeLong
Metatranscriptomes generated by pyrosequencing hold significant potential for describing functional processes in complex microbial communities. Meeting this potential requires protocols that maximize mRNA recovery by reducing the relative abundance of ribosomal RNA, as well as systematic comparisons to identify methodological artifacts and test for reproducibility across data sets. Here, we implement a protocol for subtractive hybridization of bacterial rRNA (16S and 23S) that uses sample-specific probes and is applicable across diverse environmental samples. To test this method, rRNA-subtracted and unsubtracted transcriptomes were sequenced (454 FLX technology) from bacterioplankton communities at two depths in the oligotrophic open ocean, yielding 10 data sets representing ∼350 Mbp. Subtractive hybridization reduced bacterial rRNA transcript abundance by 40–58%, increasing recovery of non-rRNA sequences up to fourfold (from 12% to 20% of total sequences to 40–49%). In testing this method, we established criteria for detecting sequences replicated artificially via pyrosequencing errors and identified such replicates as a significant component (6–39%) of total pyrosequencing reads. Following replicate removal, statistical comparisons of reference genes (identified via BLASTX to NCBI-nr) between technical replicates and between rRNA-subtracted and unsubtracted samples showed low levels of differential transcript abundance (<0.2% of reference genes). However, gene overlap between data sets was remarkably low, with no two data sets (including duplicate runs from the same pyrosequencing library template) sharing greater than 17% of unique reference genes. These results indicate that pyrosequencing captures a small subset of total mRNA diversity and underscores the importance of reliable rRNA subtraction procedures to enhance sequencing coverage across the functional transcript pool.
Science | 2011
Arbel D. Tadmor; Elizabeth A. Ottesen; Jared R. Leadbetter; Rob Phillips
Matching environmental phage with single, uncultured bacterial host cells reveals remarkable species specificity. Viruses may very well be the most abundant biological entities on the planet. Yet neither metagenomic studies nor classical phage isolation techniques have shed much light on the identity of the hosts of most viruses. We used a microfluidic digital polymerase chain reaction (PCR) approach to physically link single bacterial cells harvested from a natural environment with a viral marker gene. When we implemented this technique on the microbial community residing in the termite hindgut, we found genus-wide infection patterns displaying remarkable intragenus selectivity. Viral marker allelic diversity revealed restricted mixing of alleles between hosts, indicating limited lateral gene transfer of these alleles despite host proximity. Our approach does not require culturing hosts or viruses and provides a method for examining virus-bacterium interactions in many environments.
Science | 2014
Elizabeth A. Ottesen; Curtis R. Young; Scott M. Gifford; John M. Eppley; Roman Marin; Stephan C. Schuster; Christopher A. Scholin; Edward F. DeLong
Up and down go the cyanobacteria Plankton move together in strikingly coordinated daily patterns, sinking at night to avoid being eaten and rising to the surface in daylight to photosynthesize. Otteson et al. found similar activity patterns in even the smallest of planktonic organisms, such as photosynthetic bacteria (see the Perspective by Armbrust). Because its hard to take regular samples in the open ocean, the authors built a robotic sampler and set it adrift for several days in the mid-Pacific. The captured bacteria showed immediate responses to changes in light, temperature, and salinity in ways that could affect the oceans carbon and nitrogen cycles. Science, this issue p. 207; see also p. 134 Multispecies’ daily waves of gene transcription are observed in open ocean microplankton. [Also see Perspective by Armbrust] Oscillating diurnal rhythms of gene transcription, metabolic activity, and behavior are found in all three domains of life. However, diel cycles in naturally occurring heterotrophic bacteria and archaea have rarely been observed. Here, we report time-resolved whole-genome transcriptome profiles of multiple, naturally occurring oceanic bacterial populations sampled in situ over 3 days. As anticipated, the cyanobacterial transcriptome exhibited pronounced diel periodicity. Unexpectedly, several different heterotrophic bacterioplankton groups also displayed diel cycling in many of their gene transcripts. Furthermore, diel oscillations in different heterotrophic bacterial groups suggested population-specific timing of peak transcript expression in a variety of metabolic gene suites. These staggered multispecies waves of diel gene transcription may influence both the tempo and the mode of matter and energy transformation in the sea.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Elizabeth A. Ottesen; Curtis R. Young; John M. Eppley; John Ryan; Francisco P. Chavez; Christopher A. Scholin; Edward F. DeLong
Significance Microbial communities regulate the cycling of energy and matter in the environment, yet how they respond to environmental change is not well-known. We describe here a day in the life of wild planktonic microbial species using robotic sampling coupled with genome-wide gene expression analysis. Our results showed that closely related populations, as well as very different bacterial and archaeal species, displayed remarkably similar time-variable synchronous patterns of gene expression over 2 d. Our results suggest that specific environmental cues may elicit cross-species coordination of gene expression among diverse microbial groups, potentially enabling multispecies coupling of metabolic activity. Planktonic marine microbes live in dynamic habitats that demand rapid sensing and response to periodic as well as stochastic environmental change. The kinetics, regularity, and specificity of microbial responses in situ, however, are not well-described. We report here simultaneous multitaxon genome-wide transcriptome profiling in a naturally occurring picoplankton community. An in situ robotic sampler using a Lagrangian sampling strategy enabled continuous tracking and repeated sampling of coherent microbial populations over 2 d. Subsequent RNA sequencing analyses yielded genome-wide transcriptome profiles of eukaryotic (Ostreococcus) and bacterial (Synechococcus) photosynthetic picoplankton as well as proteorhodopsin-containing heterotrophs, including Pelagibacter, SAR86-cluster Gammaproteobacteria, and marine Euryarchaea. The photosynthetic picoplankton exhibited strong diel rhythms over thousands of gene transcripts that were remarkably consistent with diel cycling observed in laboratory pure cultures. In contrast, the heterotrophs did not cycle diurnally. Instead, heterotrophic picoplankton populations exhibited cross-species synchronous, tightly regulated, temporally variable patterns of gene expression for many genes, particularly those genes associated with growth and nutrient acquisition. This multitaxon, population-wide gene regulation seemed to reflect sporadic, short-term, reversible responses to high-frequency environmental variability. Although the timing of the environmental responses among different heterotrophic species seemed synchronous, the specific metabolic genes that were expressed varied from taxon to taxon. In aggregate, these results provide insights into the kinetics, diversity, and functional patterns of microbial community response to environmental change. Our results also suggest a means by which complex multispecies metabolic processes could be coordinated, facilitating the regulation of matter and energy processing in a dynamically changing environment.
The ISME Journal | 2011
Elizabeth A. Ottesen; Roman Marin; Christina M. Preston; Curtis R. Young; John P. Ryan; Christopher A. Scholin; Edward F. DeLong
Planktonic microbial activity and community structure is dynamic, and can change dramatically on time scales of hours to days. Yet for logistical reasons, this temporal scale is typically under-sampled in the marine environment. In order to facilitate higher-resolution, long-term observation of microbial diversity and activity, we developed a protocol for automated collection and fixation of marine microbes using the Environmental Sample Processor (ESP) platform. The protocol applies a preservative (RNALater) to cells collected on filters, for long-term storage and preservation of total cellular RNA. Microbial samples preserved using this protocol yielded high-quality RNA after 30 days of storage at room temperature, or onboard the ESP at in situ temperatures. Pyrosequencing of complementary DNA libraries generated from ESP-collected and preserved samples yielded transcript abundance profiles nearly indistinguishable from those derived from conventionally treated replicate samples. To demonstrate the utility of the method, we used a moored ESP to remotely and autonomously collect Monterey Bay seawater for metatranscriptomic analysis. Community RNA was extracted and pyrosequenced from samples collected at four time points over the course of a single day. In all four samples, the oxygenic photoautotrophs were predominantly eukaryotic, while the bacterial community was dominated by Polaribacter-like Flavobacteria and a Rhodobacterales bacterium sharing high similarity with Rhodobacterales sp. HTCC2255. However, each time point was associated with distinct species abundance and gene transcript profiles. These laboratory and field tests confirmed that autonomous collection and preservation is a feasible and useful approach for characterizing the expressed genes and environmental responses of marine microbial communities.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Adam Z. Rosenthal; Xinning Zhang; Kaitlyn S. Lucey; Elizabeth A. Ottesen; Vikas Trivedi; Harry M. T. Choi; Niles A. Pierce; Jared R. Leadbetter
Significance Most environments host a poorly understood microbial diversity. In recent years, work on gene inventories and metagenomics has revealed much about the microbial species and metabolic genes that may be present in situ; however, connecting microbial species with environmental function has lagged. Here a combination of emerging single-cell and other approaches revealed the gut microbes that may catalyze a key activity in their termite hosts. The results implicate a previously unappreciated deltaproteobacterium living on a gut protist. Identifying microbes responsible for particular environmental functions is challenging, given that most environments contain an uncultivated microbial diversity. Here we combined approaches to identify bacteria expressing genes relevant to catabolite flow and to locate these genes within their environment, in this case the gut of a “lower,” wood-feeding termite. First, environmental transcriptomics revealed that 2 of the 23 formate dehydrogenase (FDH) genes known in the system accounted for slightly more than one-half of environmental transcripts. FDH is an essential enzyme of H2 metabolism that is ultimately important for the assimilation of lignocellulose-derived energy by the insect. Second, single-cell PCR analysis revealed that two different bacterial types expressed these two transcripts. The most commonly transcribed FDH in situ is encoded by a previously unappreciated deltaproteobacterium, whereas the other FDH is spirochetal. Third, PCR analysis of fractionated gut contents demonstrated that these bacteria reside in different spatial niches; the spirochete is free-swimming, whereas the deltaproteobacterium associates with particulates. Fourth, the deltaproteobacteria expressing FDH were localized to protozoa via hybridization chain reaction-FISH, an approach for multiplexed, spatial mapping of mRNA and rRNA targets. These results underscore the importance of making direct vs. inference-based gene–species associations, and have implications in higher termites, the most successful termite lineage, in which protozoa have been lost from the gut community. Contrary to expectations, in higher termites, FDH genes related to those from the protozoan symbiont dominate, whereas most others were absent, suggesting that a successful gene variant can persist and flourish after a gut perturbation alters a major environmental niche.
Environmental Microbiology | 2014
Adrian Sharma; Jamie William Becker; Elizabeth A. Ottesen; Jessica A. Bryant; Solange Duhamel; David M. Karl; Otto X. Cordero; Daniel J. Repeta; Edward F. DeLong
A considerable fraction of the Earths organic carbon exists in dissolved form in seawater. To investigate the roles of planktonic marine microbes in the biogeochemical cycling of this dissolved organic matter (DOM), we performed controlled seawater incubation experiments and followed the responses of an oligotrophic surface water microbial assemblage to perturbations with DOM derived from an axenic culture of Prochlorococcus, or high-molecular weight DOM concentrated from nearby surface waters. The rapid transcriptional responses of both Prochlorococcus and Pelagibacter populations suggested the utilization of organic nitrogen compounds common to both DOM treatments. Along with these responses, both populations demonstrated decreases in gene transcripts associated with nitrogen stress, including those involved in ammonium acquisition. In contrast, responses from low abundance organisms of the NOR5/OM60 gammaproteobacteria were observed later in the experiment, and included elevated levels of gene transcripts associated with polysaccharide uptake and oxidation. In total, these results suggest that numerically dominant oligotrophic microbes rapidly acquire nitrogen from commonly available organic sources, and also point to an important role for carbohydrates found within the DOM pool for sustaining the less abundant microorganisms in these oligotrophic systems.
Applied and Environmental Microbiology | 2011
Elizabeth A. Ottesen; Jared R. Leadbetter
ABSTRACT In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The “higher” termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the “lower” termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes. While sequences belonging to this group were present in the guts of all six higher termites examined, treponeme-like FTHFS sequences represented the majority of recovered sequences in only two species (a wood-feeding Nasutitermes sp. and a palm-feeding Microcerotermes sp.). The remaining four termite species analyzed (a Gnathamitermes sp. and two Amitermes spp. that were recovered from subterranean nests with indeterminate feeding strategies and a litter-feeding Rhynchotermes sp.) yielded novel FTHFS clades not observed in lower termites. These termites yielded two distinct clusters of probable purinolytic Firmicutes and a large group of potential homoacetogens related to sequences previously recovered from the guts of omnivorous cockroaches. These findings suggest that the gut environments of different higher termite species may select for different groups of homoacetogens, with some species hosting treponeme-dominated homoacetogen populations similar to those of wood-feeding, lower termites while others host Firmicutes-dominated communities more similar to those of omnivorous cockroaches.