Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Roznik is active.

Publication


Featured researches published by Elizabeth A. Roznik.


PLOS ONE | 2013

Variation in thermal performance of a widespread pathogen, the amphibian chytrid fungus Batrachochytrium dendrobatidis.

Lisa A. Stevenson; Ross A. Alford; Sara C. Bell; Elizabeth A. Roznik; Lee Berger; David A. Pike

Rates of growth and reproduction of the pathogens that cause emerging infectious diseases can be affected by local environmental conditions; these conditions can thus influence the strength and nature of disease outbreaks. An understanding of these relationships is important for understanding disease ecology and developing mitigation strategies. Widespread emergence of the fungal disease chytridiomycosis has had devastating effects on amphibian populations. The causative pathogen, Batrachochytriumdendrobatidis (Bd), is sensitive to temperature, but its thermal tolerances are not well studied. We examined the thermal responses of three Bd isolates collected across a latitudinal gradient in eastern Australia. Temperature affected all aspects of Bd growth and reproduction that we measured, in ways that often differed among Bd isolates. Aspects of growth, reproduction, and their relationships to temperature that differed among isolates included upper thermal maxima for growth (26, 27, or 28°C, depending on the isolate), relationships between zoospore production and temperature, and zoospore activity and temperature. Two isolates decreased zoospore production as temperature increased, whereas the third isolate was less fecund overall, but did not show a strong response to temperature until reaching the upper limit of its thermal tolerance. Our results show differentiation in life-history traits among isolates within Australia, suggesting that the pathogen may exhibit local adaptation. An understanding of how environmental temperatures can limit pathogens by constraining fitness will enhance our ability to assess pathogen dynamics in the field, model pathogen spread, and conduct realistic experiments on host susceptibility and disease transmission.


Herpetologica | 2014

Visible Implant Elastomer Marking Does Not Affect Short-term Movements or Survival Rates of the Treefrog Litoria rheocola

Sarah J. Sapsford; Elizabeth A. Roznik; Ross A. Alford; Lin Schwarzkopf

Abstract:  Many recent amphibian studies have involved marking individuals using visible implant elastomer (VIE), but the effects of VIE on the movements or survival of amphibians in the wild are unknown. Our aim was to determine if VIE marking influenced the movement distances and survival rates of Common Mistfrogs (Litoria rheocola) in the wild over the 3-wk period following application when effects from handling and marking might be strongest. We used harmonic direction finding to track adult frogs that were either unmarked or marked with VIE, and compared their movement distances, probability of movement, and survival estimates. To account for any effects of the external tracking tags on frog survival, we also estimated survival rates for frogs that were not tracked, but were marked and recaptured at the same site during the same time period. We found no effects of VIE marking on distances moved by frogs or the probability of movement. For tracked frogs, estimated daily survival rates for marked frogs were slightly, but not significantly, higher than those for unmarked frogs. Estimated survival rates were similar between marked frogs that were tracked and marked frogs that were not tracked, suggesting that tracking tags did not influence survival during our study. Of tracked frogs, individuals that were marked had 12.4% higher recapture rates than unmarked individuals. Overall, we found that VIE had minimal effects on movements and survival of frogs over the 3-wk period immediately after marking.


Scientific Reports | 2015

Natural disturbance reduces disease risk in endangered rainforest frog populations

Elizabeth A. Roznik; Sarah J. Sapsford; David A. Pike; Lin Schwarzkopf; Ross A. Alford

Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangered rainforest frogs (Litoria rheocola) becoming infected by a fungal pathogen (Batrachochytrium dendrobatidis). Reductions in canopy cover increased the temperatures and rates of evaporative water loss in frog microhabitats, which reduced B. dendrobatidis infection risk in frogs by an average of 11–28% in cyclone-damaged areas, relative to unaffected areas. Natural disturbances to the rainforest canopy can therefore provide an immediate benefit to frogs by altering the microclimate in ways that reduce infection risk. This could increase host survival and reduce the probability of epidemic disease outbreaks. For amphibian populations under immediate threat from this pathogen, targeted manipulation of canopy cover could increase the availability of warmer, drier microclimates and therefore tip the balance from host extinction to coexistence.


Roznik, E.A., Sapsford, S.J. <http://researchrepository.murdoch.edu.au/view/author/Sapsford, Sarah.html>, Pike, D.A., Schwarzkopf, L. and Alford, R.A. (2015) Condition-dependent reproductive effort in frogs infected by a widespread pathogen. Proceedings of the Royal Society B: Biological Sciences, 282 (1810). p. 20150694. | 2015

Condition-dependent reproductive effort in frogs infected by a widespread pathogen

Elizabeth A. Roznik; Sarah J. Sapsford; David A. Pike; Lin Schwarzkopf; Ross A. Alford

To minimize the negative effects of an infection on fitness, hosts can respond adaptively by altering their reproductive effort or by adjusting their timing of reproduction. We studied effects of the pathogenic fungus Batrachochytrium dendrobatidis on the probability of calling in a stream-breeding rainforest frog (Litoria rheocola). In uninfected frogs, calling probability was relatively constant across seasons and body conditions, but in infected frogs, calling probability differed among seasons (lowest in winter, highest in summer) and was strongly and positively related to body condition. Infected frogs in poor condition were up to 40% less likely to call than uninfected frogs, whereas infected frogs in good condition were up to 30% more likely to call than uninfected frogs. Our results suggest that frogs employed a pre-existing, plastic, life-history strategy in response to infection, which may have complex evolutionary implications. If infected males in good condition reproduce at rates equal to or greater than those of uninfected males, selection on factors affecting disease susceptibility may be minimal. However, because reproductive effort in infected males is positively related to body condition, there may be selection on mechanisms that limit the negative effects of infections on hosts.


Royal Society Open Science | 2015

Nest inundation from sea-level rise threatens sea turtle population viability

David A. Pike; Elizabeth A. Roznik; Ian Bell

Contemporary sea-level rise will inundate coastal habitats with seawater more frequently, disrupting the life cycles of terrestrial fauna well before permanent habitat loss occurs. Sea turtles are reliant on low-lying coastal habitats worldwide for nesting, where eggs buried in the sand remain vulnerable to inundation until hatching. We show that saltwater inundation directly lowers the viability of green turtle eggs (Chelonia mydas) collected from the worlds largest green turtle nesting rookery at Raine Island, Australia, which is undergoing enigmatic decline. Inundation for 1 or 3 h reduced egg viability by less than 10%, whereas inundation for 6 h reduced viability by approximately 30%. All embryonic developmental stages were vulnerable to mortality from saltwater inundation. Although the hatchlings that emerged from inundated eggs displayed normal physical and behavioural traits, hypoxia during incubation could influence other aspects of the physiology or behaviour of developing embryos, such as learning or spatial orientation. Saltwater inundation can directly lower hatching success, but it does not completely explain the consistently low rates of hatchling production observed on Raine Island. More frequent nest inundation associated with sea-level rise will increase variability in sea turtle hatching success spatially and temporally, due to direct and indirect impacts of saltwater inundation on developing embryos.


Biological Reviews | 2017

Climate change and nesting behaviour in vertebrates: a review of the ecological threats and potential for adaptive responses: Climate change and nesting behaviour

Mark C. Mainwaring; Iain Barber; Denis C. Deeming; David A. Pike; Elizabeth A. Roznik; Ian R. Hartley

Nest building is a taxonomically widespread and diverse trait that allows animals to alter local environments to create optimal conditions for offspring development. However, there is growing evidence that climate change is adversely affecting nest‐building in animals directly, for example via sea‐level rises that flood nests, reduced availability of building materials, and suboptimal sex allocation in species exhibiting temperature‐dependent sex determination. Climate change is also affecting nesting species indirectly, via range shifts into suboptimal nesting areas, reduced quality of nest‐building environments, and changes in interactions with nest predators and parasites. The ability of animals to adapt to sustained and rapid environmental change is crucial for the long‐term persistence of many species. Many animals are known to be capable of adjusting nesting behaviour adaptively across environmental gradients and in line with seasonal changes, and this existing plasticity potentially facilitates adaptation to anthropogenic climate change. However, whilst alterations in nesting phenology, site selection and design may facilitate short‐term adaptations, the ability of nest‐building animals to adapt over longer timescales is likely to be influenced by the heritable basis of such behaviour. We urgently need to understand how the behaviour and ecology of nest‐building in animals is affected by climate change, and particularly how altered patterns of nesting behaviour affect individual fitness and population persistence. We begin our review by summarising how predictable variation in environmental conditions influences nest‐building animals, before highlighting the ecological threats facing nest‐building animals experiencing anthropogenic climate change and examining the potential for changes in nest location and/or design to provide adaptive short‐ and long‐term responses to changing environmental conditions. We end by identifying areas that we believe warrant the most urgent attention for further research.


PLOS ONE | 2015

Seasonal Ecology and Behavior of an Endangered Rainforest Frog (Litoria rheocola) Threatened by Disease

Elizabeth A. Roznik; Ross A. Alford

One of the most devastating wildlife diseases ever recorded is chytridiomycosis, a recently emerged amphibian disease that is caused by the chytrid fungus Batrachochytrium dendrobatidis. Understanding, predicting, and managing the impacts of chytridiomycosis on any amphibian species will require detailed information on its ecology and behavior because this pathogen is transmitted by contact with water or other individuals, and pathogen growth rates are thermally sensitive. The common mistfrog (Litoria rheocola) is an endangered tropical rainforest frog that has declined due to chytridiomycosis. We tracked L. rheocola during the winter (cool/dry) and summer (warm/wet) seasons at a low- and high-elevation site. We found that seasonal differences in environmental temperatures and frog behavior should render this species most vulnerable to B. dendrobatidis during cooler months and at higher elevations, which matches observed patterns of infection prevalence in this species. During winter, frogs moved shorter distances than during summer, and they spent less time in vegetation and more time in the stream, which should increase exposure to aquatic B. dendrobatidis zoospores. At a low-elevation site (40 m ASL), estimated body temperatures were within the optimal range for B. dendrobatidis growth (15-25°C) most of the time during winter, but they reached temperatures above this threshold frequently in summer. At a higher elevation (750 m ASL), estimated body temperatures were within the range most favorable for B. dendrobatidis year-round, and did not exceed 25°C, even during summer. Our study provides the first detailed information on the ecology and behavior of L. rheocola and suggests ecological mechanisms for infection dynamics that have been observed in this endangered species.


Ecology and Evolution | 2014

Host-specific thermal profiles affect fitness of a widespread pathogen

Lisa A. Stevenson; Elizabeth A. Roznik; Ross A. Alford; David A. Pike

Host behavior can interact with environmental context to influence outcomes of pathogen exposure and the impact of disease on species and populations. Determining whether the thermal behaviors of individual species influence susceptibility to disease can help enhance our ability to explain and predict how and when disease outbreaks are likely to occur. The widespread disease chytridiomycosis (caused by the fungal pathogen Batrachochytrium dendrobatidis, Bd) often has species-specific impacts on amphibian communities; some host species are asymptomatic, whereas others experience mass mortalities and population extirpation. We determined whether the average natural thermal regimes experienced by sympatric frog species in nature, in and of themselves, can account for differences in vulnerability to disease. We did this by growing Bd under temperatures mimicking those experienced by frogs in the wild. At low and high elevations, the rainforest frogs Litoria nannotis, L. rheocola, and L. serrata maintained mean thermal regimes within the optimal range for pathogen growth (15–25°C). Thermal regimes for L. serrata, which has recovered from Bd-related declines, resulted in slower pathogen growth than the cooler and less variable thermal regimes for the other two species, which have experienced more long-lasting declines. For L. rheocola and L. serrata, pathogen growth was faster in thermal regimes corresponding to high elevations than in those corresponding to low elevations, where temperatures were warmer. For L. nannotis, which prefers moist and thermally stable microenvironments, pathogen growth was fastest for low-elevation thermal regimes. All of the thermal regimes we tested resulted in pathogen growth rates equivalent to, or significantly faster than, rates expected from constant-temperature experiments. The effects of host body temperature on Bd can explain many of the broad ecological patterns of population declines in our focal species, via direct effects on pathogen fitness. Understanding the functional response of pathogens to conditions experienced by the host is important for determining the ecological drivers of disease outbreaks.


Journal of Thermal Biology | 2014

Using pairs of physiological models to estimate temporal variation in amphibian body temperature

Elizabeth A. Roznik; Ross A. Alford

Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures experienced by individual frogs, and that comparing temperatures from model pairs to direct measurements collected simultaneously on frogs can be used to broadly characterize the skin resistance of a species, and to select which model type is most appropriate for estimating temperature distributions for that species.


Ecology and Evolution | 2016

Robust calling performance in frogs infected by a deadly fungal pathogen

Sasha E. Greenspan; Elizabeth A. Roznik; Lin Schwarzkopf; Ross A. Alford; David A. Pike

Abstract Reproduction is an energetically costly behavior for many organisms, including species with mating systems in which males call to attract females. In these species, calling males can often attract more females by displaying more often, with higher intensity, or at certain frequencies. Male frogs attract females almost exclusively by calling, and we know little about how pathogens, including the globally devastating fungus, Batrachochytrium dendrobatidis, influence calling effort and call traits. A previous study demonstrated that the nightly probability of calling by male treefrogs, Litoria rheocola, is elevated when they are in good body condition and are infected by B. dendrobatidis. This suggests that infections may cause males to increase their present investment in mate attraction to compensate for potential decreases in future reproduction. However, if infection by B. dendrobatidis decreases the attractiveness of their calls, infected males might experience decreased reproductive success despite increases in calling effort. We examined whether calls emitted by L. rheocola infected by B. dendrobatidis differed from those of uninfected individuals in duration, pulse rate, dominant frequency, call rate, or intercall interval, the attributes commonly linked to mate choice. We found no effects of fungal infection status or infection intensity on any call attribute. Our results indicate that infected males produce calls similar in all the qualities we measured to those of uninfected males. It is therefore likely that the calls of infected and uninfected males should be equally attractive to females. The increased nightly probability of calling previously demonstrated for infected males in good condition may therefore lead to greater reproductive success than that of uninfected males. This could reduce the effectiveness of natural selection for resistance to infection, but could increase the effectiveness of selection for infection tolerance, the ability to limit the harm caused by infection, such as reductions in body condition.

Collaboration


Dive into the Elizabeth A. Roznik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Bell

James Cook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge