Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Schroder is active.

Publication


Featured researches published by Elizabeth A. Schroder.


The Journal of Physiology | 2004

Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes

Jonathan Satin; Izhak Kehat; Oren Caspi; Irit Huber; Gil Arbel; Ilanit Itzhaki; János Magyar; Elizabeth A. Schroder; Ido Perlman; Lior Gepstein

Human embryonic stem cell‐derived cardiomyocytes (hES‐CMs) are thought to recapitulate the embryonic development of heart cells. Given the exciting potential of hES‐CMs as replacement tissue in diseased hearts, we investigated the pharmacological sensitivity and ionic current of mid‐stage hES‐CMs (20–35 days post plating). A high‐resolution microelectrode array was used to assess conduction in multicellular preparations of hES‐CMs in spontaneously contracting embryoid bodies (EBs). TTX (10 μm) dramatically slowed conduction velocity from 5.1 to 3.2 cm s−1 while 100 μm TTX caused complete cessation of spontaneous electrical activity in all EBs studied. In contrast, the Ca2+ channel blockers nifedipine or diltiazem (1 μm) had a negligible effect on conduction. These results suggested a prominent Na+ channel current, and therefore we patch‐clamped isolated cells to record Na+ current and action potentials (APs). We found for isolated hES‐CMs a prominent Na+ current (244 ± 42 pA pF−1 at 0 mV; n= 19), and a hyperpolarization‐activated current (HCN), but no inward rectifier K+ current. In cell clusters, 3 μm TTX induced longer AP interpulse intervals and 10 μm TTX caused cessation of spontaneous APs. In contrast nifedipine (Ca2+ channel block) and 2 mm Cs+ (HCN complete block) induced shorter AP interpulse intervals. In single cells, APs stimulated by current pulses had a maximum upstroke velocity (dV/dtmax) of 118 ± 14 V s−1 in control conditions; in contrast, partial block of Na+ current significantly reduced stimulated dV/dtmax (38 ± 15 V s−1). RT‐PCR revealed NaV1.5, CaV1.2, and HCN‐2 expression but we could not detect Kir2.1. We conclude that hES‐CMs at mid‐range development express prominent Na+ current. The absence of background K+ current creates conditions for spontaneous activity that is sensitive to TTX in the same range of partial block of NaV1.5; thus, the NaV1.5 Na+ channel is important for initiating spontaneous excitability in hES‐derived heart cells.


Stem Cells | 2008

Calcium Handling in Human Embryonic Stem Cell-Derived Cardiomyocytes

Jonathan Satin; Ilanit Itzhaki; Sophia Rapoport; Elizabeth A. Schroder; Leighton T. Izu; Gil Arbel; Rafael Beyar; C. William Balke; Jackie Schiller; Lior Gepstein

The objective of the current study was to characterize calcium handling in developing human embryonic stem cell‐derived cardiomyocytes (hESC‐CMs). To this end, real‐time polymerase chain reaction (PCR), immunocytochemistry, whole‐cell voltage‐clamp, and simultaneous patch‐clamp/laser scanning confocal calcium imaging and surface membrane labeling with di‐8‐aminonaphthylethenylpridinium were used. Immunostaining studies in the hESC‐CMs demonstrated the presence of the sarcoplasmic reticulum (SR) calcium release channels, ryanodine receptor‐2, and inositol‐1,4,5‐trisphosphate (IP3) receptors. Store calcium function was manifested as action‐potential‐induced calcium transients. Time‐to‐target plots showed that these action‐potential‐initiated calcium transients traverse the width of the cell via a propagated wave of intracellular store calcium release. The hESC‐CMs also exhibited local calcium events (“sparks”) that were localized to the surface membrane. The presence of caffeine‐sensitive intracellular calcium stores was manifested following application of focal, temporally limited puffs of caffeine in three different age groups: early‐stage (with the initiation of beating), intermediate‐stage (10 days post‐beating [dpb]), and late‐stage (30–40 dpb) hESC‐CMs. Calcium store load gradually increased during in vitro maturation. Similarly, ryanodine application decreased the amplitude of the spontaneous calcium transients. Interestingly, the expression and function of an IP3‐releasable calcium pool was also demonstrated in the hESC‐CMs in experiments using caged‐IP3 photolysis and antagonist application (2 μM 2‐Aminoethoxydiphenyl borate). In summary, our study establishes the presence of a functional SR calcium store in early‐stage hESC‐CMs and shows a unique pattern of calcium handling in these cells. This study also stresses the importance of the functional characterization of hESC‐CMs both for developmental studies and for the development of future myocardial cell replacement strategies.


Circulation Research | 2001

Identification of the T-Type Calcium Channel (CaV3.1d) in Developing Mouse Heart

Leanne L. Cribbs; Beverly L. Martin; Elizabeth A. Schroder; Bradley B. Keller; Brian P. Delisle; Jonathan Satin

Abstract— During cardiac development, there is a reciprocal relationship between cardiac morphogenesis and force production (contractility). In the early embryonic myocardium, the sarcoplasmic reticulum is poorly developed, and plasma membrane calcium (Ca2+) channels are critical for maintaining both contractility and excitability. In the present study, we identified the CaV3.1d mRNA expressed in embryonic day 14 (E14) mouse heart. CaV3.1d is a splice variant of the &agr;1G, T-type Ca2+ channel. Immunohistochemical localization showed expression of &agr;1G Ca2+ channels in E14 myocardium, and staining of isolated ventricular myocytes revealed membrane localization of the &agr;1G channels. Dihydropyridine-resistant inward Ba2+ or Ca2+ currents were present in all fetal ventricular myocytes tested. Regardless of charge carrier, inward current inactivated with sustained depolarization and mirrored steady-state inactivation voltage dependence of the &agr;1G channel expressed in human embryonic kidney-293 cells. Ni2+ blockade discriminates among T-type Ca2+ channel isoforms and is a relatively selective blocker of T-type channels over other cardiac plasma membrane Ca2+ handling proteins. We demonstrate that 100 &mgr;mol/L Ni2+ partially blocked &agr;1G currents under physiological external Ca2+. We conclude that &agr;1G T-type Ca2+ channels are functional in midgestational fetal myocardium.


Circulation Research | 2009

L-Type Calcium Channel C Terminus Autoregulates Transcription

Elizabeth A. Schroder; Miranda J. Byse; Jonathan Satin

Calcium homeostasis is critical for cardiac myocyte function and must be tightly regulated. The guiding hypothesis of this study is that a carboxyl-terminal cleavage product of the cardiac L-type calcium channel (CaV1.2) autoregulates expression. First, we confirmed that the CaV1.2 C terminus (CCt) is cleaved in murine cardiac myocytes from mature and developing ventricle. Overexpression of full-length CCt caused a 34±8% decrease of CaV1.2 promoter activity, and truncated CCt caused an 80±3% decrease of CaV1.2 promoter (n=12). The full-length CCt distributes into cytosol and nucleus. A deletion mutant of CCt has a greater relative affinity for the nucleus than full-length CCt, and this is consistent with increased repression of CaV1.2 promoter activity by truncated CCt. Chromatin immunoprecipitation analysis revealed that CCt interacts with the CaV1.2 promoter in adult ventricular cardiac myocytes at promoter modules containing Nkx2.5/Mef2, C/EBp, and a cis regulatory module. The next hypothesis tested was that CCt contributes to transcriptional signaling associated with cellular hypertrophy. We explored whether fetal cardiac myocyte CaV1.2 was regulated by serum in vitro. We tested atrial natriuretic factor promoter activity as a positive control and measured the serum response of CaV1.2 promoter, protein, and L-type current (ICa,L) from fetal mouse ventricular myocytes. Serum increased atrial natriuretic factor promoter activity and cell size as expected. Serum withdrawal increased CaV1.2 promoter activity, mRNA, and ICa,L. Moreover, serum withdrawal decreased the relative nuclear localization of CCt. A combination of promoter deletion mutant analyses, and the response of promoter mutants to serum withdrawal support the conclusion that CCt, a proteolytic fragment of CaV1.2, autoregulates CaV1.2 expression in cardiac myocytes. These data support the novel mechanism that a mobile segment of CaV1.2 links Ca handling to nuclear signaling.


American Journal of Physiology-cell Physiology | 2013

The cardiomyocyte molecular clock, regulation of Scn5a, and arrhythmia susceptibility

Elizabeth A. Schroder; Mellani Lefta; Xiping Zhang; Daniel C. Bartos; Han-Zhong Feng; Yihua Zhao; Abhijit Patwardhan; Jian Ping Jin; Karyn A. Esser; Brian P. Delisle

The molecular clock mechanism underlies circadian rhythms and is defined by a transcription-translation feedback loop. Bmal1 encodes a core molecular clock transcription factor. Germline Bmal1 knockout mice show a loss of circadian variation in heart rate and blood pressure, and they develop dilated cardiomyopathy. We tested the role of the molecular clock in adult cardiomyocytes by generating mice that allow for the inducible cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1). ECG telemetry showed that cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1(-/-)) in adult mice slowed heart rate, prolonged RR and QRS intervals, and increased episodes of arrhythmia. Moreover, isolated iCSΔBmal1(-/-) hearts were more susceptible to arrhythmia during electromechanical stimulation. Examination of candidate cardiac ion channel genes showed that Scn5a, which encodes the principle cardiac voltage-gated Na(+) channel (Na(V)1.5), was circadianly expressed in control mouse and rat hearts but not in iCSΔBmal1(-/-) hearts. In vitro studies confirmed circadian expression of a human Scn5a promoter-luciferase reporter construct and determined that overexpression of clock factors transactivated the Scn5a promoter. Loss of Scn5a circadian expression in iCSΔBmal1(-/-) hearts was associated with decreased levels of Na(V)1.5 and Na(+) current in ventricular myocytes. We conclude that disruption of the molecular clock in the adult heart slows heart rate, increases arrhythmias, and decreases the functional expression of Scn5a. These findings suggest a potential link between environmental factors that alter the cardiomyocyte molecular clock and factors that influence arrhythmia susceptibility in humans.


Journal of Biological Rhythms | 2015

Circadian Rhythms, the Molecular Clock, and Skeletal Muscle:

Brianna D. Harfmann; Elizabeth A. Schroder; Karyn A. Esser

Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle.


Journal of Clinical Investigation | 2015

Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation.

Zhongwen Xie; Wen Su; Shu Liu; Guogang Zhao; Karyn A. Esser; Elizabeth A. Schroder; Mellani Lefta; Harald M. Stauss; Zhenheng Guo; Ming C. Gong

As the central pacemaker, the suprachiasmatic nucleus (SCN) has long been considered the primary regulator of blood pressure circadian rhythm; however, this dogma has been challenged by the discovery that each of the clock genes present in the SCN is also expressed and functions in peripheral tissues. The involvement and contribution of these peripheral clock genes in the circadian rhythm of blood pressure remains uncertain. Here, we demonstrate that selective deletion of the circadian clock transcriptional activator aryl hydrocarbon receptor nuclear translocator-like (Bmal1) from smooth muscle, but not from cardiomyocytes, compromised blood pressure circadian rhythm and decreased blood pressure without affecting SCN-controlled locomotor activity in murine models. In mesenteric arteries, BMAL1 bound to the promoter of and activated the transcription of Rho-kinase 2 (Rock2), and Bmal1 deletion abolished the time-of-day variations in response to agonist-induced vasoconstriction, myosin phosphorylation, and ROCK2 activation. Together, these data indicate that peripheral inputs contribute to the daily control of vasoconstriction and blood pressure and suggest that clock gene expression outside of the SCN should be further evaluated to elucidate pathogenic mechanisms of diseases involving blood pressure circadian rhythm disruption.


Skeletal Muscle | 2015

The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle

Brian A. Hodge; Yuan Wen; Lance A. Riley; Xiping Zhang; Jonathan H. England; Brianna D. Harfmann; Elizabeth A. Schroder; Karyn A. Esser

BackgroundSkeletal muscle is a major contributor to whole-body metabolism as it serves as a depot for both glucose and amino acids, and is a highly metabolically active tissue. Within skeletal muscle exists an intrinsic molecular clock mechanism that regulates the timing of physiological processes. A key function of the clock is to regulate the timing of metabolic processes to anticipate time of day changes in environmental conditions. The purpose of this study was to identify metabolic genes that are expressed in a circadian manner and determine if these genes are regulated downstream of the intrinsic molecular clock by assaying gene expression in an inducible skeletal muscle-specific Bmal1 knockout mouse model (iMS-Bmal1−/−).MethodsWe used circadian statistics to analyze a publicly available, high-resolution time-course skeletal muscle expression dataset. Gene ontology analysis was utilized to identify enriched biological processes in the skeletal muscle circadian transcriptome. We generated a tamoxifen-inducible skeletal muscle-specific Bmal1 knockout mouse model and performed a time-course microarray experiment to identify gene expression changes downstream of the molecular clock. Wheel activity monitoring was used to assess circadian behavioral rhythms in iMS-Bmal1−/− and control iMS-Bmal1+/+ mice.ResultsThe skeletal muscle circadian transcriptome was highly enriched for metabolic processes. Acrophase analysis of circadian metabolic genes revealed a temporal separation of genes involved in substrate utilization and storage over a 24-h period. A number of circadian metabolic genes were differentially expressed in the skeletal muscle of the iMS-Bmal1−/− mice. The iMS-Bmal1−/− mice displayed circadian behavioral rhythms indistinguishable from iMS-Bmal1+/+ mice. We also observed a gene signature indicative of a fast to slow fiber-type shift and a more oxidative skeletal muscle in the iMS-Bmal1−/− model.ConclusionsThese data provide evidence that the intrinsic molecular clock in skeletal muscle temporally regulates genes involved in the utilization and storage of substrates independent of circadian activity. Disruption of this mechanism caused by phase shifts (that is, social jetlag) or night eating may ultimately diminish skeletal muscle’s ability to efficiently maintain metabolic homeostasis over a 24-h period.


Circulation Research | 2002

Microtubule Involvement in the Adaptation to Altered Mechanical Load in Developing Chick Myocardium

Elizabeth A. Schroder; Kimimasa Tobita; Joseph P. Tinney; Jane K. Foldes; Bradley B. Keller

Abstract— Mechanical load regulates ventricular growth, function, and structure from the earliest stages of cardiac morphogenesis through senescence. Dramatic changes in cardiac form and function have been defined for developing cardiovascular systems, and changes in mechanical loading conditions can produce structural malformations such as left heart hypoplasia. To date, relatively little is known regarding the interactions between changes in mechanical load, morphogenesis, and the material properties of the embryonic heart. We tested the hypothesis that passive material properties in the embryonic heart change in response to altered mechanical load and that microtubules play an important role in this adaptive response. We measured biaxial passive stress-strain relations in left ventricular (LV) myocardial strips in chick embryos at Hamburger-Hamilton stage 27 following left atrial ligation (LAL) at stage 21 to reduce LV volume load and create left heart hypoplasia. Following LAL, myocardial stresses at given strains and circumferential stiffness increased versus control strips. Western blot analysis of LAL embryos showed an increase in both total and polymerized &bgr;-tubulin and confocal microscopy confirmed an increase in microtubule density in the LV compact layer versus control. Following colchicine treatment, LV stresses and stiffness normalized in LAL specimens and microtubule density following colchicine was similar in LAL to control. In contrast, Taxol treatment increased myocardial stresses and stiffness in control strips to levels beyond LAL specimens. Thus, the material properties of the developing myocardium are regulated by mechanical load and microtubules play a role in this adaptive response during cardiac morphogenesis.


PLOS ONE | 2011

Age-Associated Disruption of Molecular Clock Expression in Skeletal Muscle of the Spontaneously Hypertensive Rat

Mitsunori Miyazaki; Elizabeth A. Schroder; Stephanie E. Edelmann; Michael E. Hughes; Karl Kornacker; C. William Balke; Karyn A. Esser

It is well known that spontaneously hypertensive rats (SHR) develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007) linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure) compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive) and adult age (22 weeks; hypertensive) to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.

Collaboration


Dive into the Elizabeth A. Schroder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge