Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth A. Shephard is active.

Publication


Featured researches published by Elizabeth A. Shephard.


Pharmacogenetics | 2004

Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: Identification of novel gene and pseudogene clusters

Diana Hernandez; Azara Janmohamed; Pritpal Chandan; Ian R. Phillips; Elizabeth A. Shephard

OBJECTIVESnTo date, six flavin-containing monooxygenase (FMO) genes have been identified in humans, FMOs 1, 2, 3, 4 and 6, which are located within a cluster on chromosome 1, and FMO5, which is located outside the cluster. The objectives were to review and update current knowledge of the structure and expression profiles of these genes and of their mouse counterparts and to determine, via a bioinformatics approach, whether other FMO genes are present in the human and mouse genomes.nnnRESULTS AND CONCLUSIONSnWe have identified, for the first time, a mouse Fmo6 gene. In addition, we describe a novel human FMO gene cluster on chromosome 1, located 4 Mb telomeric of the original cluster. The novel cluster contains five genes, all of which exhibit characteristics of pseudogenes. We propose the names FMO 7P, 8P, 9P, 10P and 11P for these genes. We also describe a novel mouse gene cluster, located approximately 3.5 Mb distal of the original gene cluster on Chromosome 1. The novel mouse cluster contains three genes, all of which contain full-length open-reading frames and possess no obvious features characteristic of pseudogenes. One of the genes is apparently a functional orthologue of human FMO9P. We propose the names Fmo9, 12 and 13 for the novel mouse genes. Orthologues of these genes are also present in rat. Sequence comparisons and phylogenetic analyses indicate that the novel human and mouse gene clusters arose, not from duplications of the known gene cluster, but via a series of independent gene duplication events. The mammalian FMO gene family is thus more complex than previously realised.


Drug Metabolism and Disposition | 2016

Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease

Diede Fennema; Ian R. Phillips; Elizabeth A. Shephard

Flavin-containing monooxygenase 3 (FMO3) is known primarily as an enzyme involved in the metabolism of therapeutic drugs. On a daily basis, however, we are exposed to one of the most abundant substrates of the enzyme trimethylamine (TMA), which is released from various dietary components by the action of gut bacteria. FMO3 converts the odorous TMA to nonodorous TMA N-oxide (TMAO), which is excreted in urine. Impaired FMO3 activity gives rise to the inherited disorder primary trimethylaminuria (TMAU). Affected individuals cannot produce TMAO and, consequently, excrete large amounts of TMA. A dysbiosis in gut bacteria can give rise to secondary TMAU. Recently, there has been much interest in FMO3 and its catalytic product, TMAO, because TMAO has been implicated in various conditions affecting health, including cardiovascular disease, reverse cholesterol transport, and glucose and lipid homeostasis. In this review, we consider the dietary components that can give rise to TMA, the gut bacteria involved in the production of TMA from dietary precursors, the metabolic reactions by which bacteria produce and use TMA, and the enzymes that catalyze the reactions. Also included is information on bacteria that produce TMA in the oral cavity and vagina, two key microbiome niches that can influence health. Finally, we discuss the importance of the TMA/TMAO microbiome-host axis in health and disease, considering factors that affect bacterial production and host metabolism of TMA, the involvement of TMAO and FMO3 in disease, and the implications of the host-microbiome axis for management of TMAU.


Biochemical Journal | 2007

Alternative promoters and repetitive DNA elements define the species-dependent tissue-specific expression of the FMO1 genes of human and mouse

Elizabeth A. Shephard; Pritpal Chandan; Milena Stevanovic-Walker; Mina Edwards; Ian R. Phillips

In humans, expression of the FMO1 (flavin-containing mono-oxygenase 1) gene is silenced postnatally in liver, but not kidney. In adult mouse, however, the gene is active in both tissues. We investigated the basis of this species-dependent tissue-specific transcription of FMO1. Our results indicate the use of three alternative promoters. Transcription of the gene in fetal human and adult mouse liver is exclusively from the P0 promoter, whereas in extra-hepatic tissues of both species, P1 and P2 are active. Reporter gene assays showed that the proximal P0 promoters of human (hFMO1) and mouse (mFmo1) genes are equally effective. However, sequences upstream (-2955 to -506) of the proximal P0 of mFmo1 increased reporter gene activity 3-fold, whereas hFMO1 upstream sequences (-3027 to -541) decreased reporter gene activity by 75%. Replacement of the upstream sequence of human P0 with the upstream sequence of mouse P0 increased activity of the human proximal P0 8-fold. Species-specific repetitive elements are present immediately upstream of the proximal P0 promoters. The human gene contains five LINE (long-interspersed nuclear element)-1-like elements, whereas the mouse gene contains a poly A region, an 80-bp direct repeat, an LTR (long terminal repeat), a SINE (short-interspersed nuclear element) and a poly T tract. The rat and rabbit FMO1 genes, which are expressed in adult liver, lack some (rat) or all (rabbit) of the elements upstream of mouse P0. Thus silencing of FMO1 in adult human liver is due apparently to the presence upstream of the proximal P0 of L1 (LINE-1) elements rather than the absence of retrotransposons similar to those found in the mouse gene.


Drug Metabolism and Disposition | 2009

Human flavin-containing monooxygenase 2.1 catalyzes oxygenation of the antitubercular drugs thiacetazone and ethionamide.

Asvi A. Francois; Clinton R. Nishida; Paul R. Ortiz de Montellano; Ian R. Phillips; Elizabeth A. Shephard

The second-line antitubercular drugs thiacetazone (TAZ) and ethionamide (ETA) are bioactivated by the mycobacterial enzyme EtaA. We report here that human flavin-containing monooxygenase 2.1 (FMO2.1), which is expressed predominantly in the lung, catalyzes oxygenation of TAZ. The metabolites generated, the sulfenic acid, sulfinic acid, and carbodiimide derivatives, are the same as those produced by EtaA and human FMO1 and FMO3. Two of the metabolites, the sulfenic acid and carbodiimide, are known to be harmful to mammalian cells. FMO2.1 also catalyzes oxygenation of ETA, producing the S-oxide. We have developed a novel spectrophotometric assay for TAZ oxygenation. The assay was used to determine kinetic parameters for TAZ oxygenation catalyzed by human FMO1, FMO2.1, and FMO3 and by EtaA. Although the KM values for the four enzyme-catalyzed reactions are similar, kcat and, consequently, kcat/KM (the specificity constant) for FMO2.1-catalyzed TAZ oxygenation are much higher than those of FMO1, FMO3, or EtaA. This indicates that FMO2.1 is more effective in catalyzing TAZ oxygenation than are the other three enzymes and thus is likely to contribute substantially to the metabolism of TAZ, decreasing the availability of the prodrug to mycobacteria and producing toxic metabolites. Because of a genetic polymorphism, Europeans and Asians lack FMO2.1. However, in sub-Saharan Africa, a region in which tuberculosis is a major health problem, a substantial proportion of individuals express FMO2.1. Thus, our results may explain some of the observed interindividual differences in response to TAZ and ETA and have implications for the treatment of tuberculosis in sub-Saharan Africa.


Pharmacogenetics and Genomics | 2009

Deletion of the mouse fmo1 gene results in enhanced pharmacological behavioural responses to imipramine

Diana Hernandez; Azara Janmohamed; Pritpal Chandan; Bilal A. Omar; Ian R. Phillips; Elizabeth A. Shephard

Objectives Many drugs are the subject of multipathway oxidative metabolism catalyzed by one or more cytochromes P450 or flavin-containing monooxygenases (FMOs). This complicates assessment of the role of individual enzymes in metabolizing the drug and, hence, in understanding its pharmacogenetics. To define the role of FMOs in drug metabolism, we produced FMO-deficient mice. Methods An Fmo1(−/−), Fmo2(−/−), Fmo4(−/−) mouse line was produced by using chromosomal engineering and Cre-loxP technology. To assess the utility of the mutant mouse line, it was used to investigate the role of FMO in the metabolism of and response to the antidepressant imipramine, which has four major metabolites, three produced by cytochromes P450 and one, imipramine N-oxide, solely by FMO1. Results On treatment with imipramine, wild-type mice became sedated and produced imipramine N-oxide in the brain and other tissues. In contrast, knockout mice did not produce imipramine N-oxide, but showed exaggerated pharmacological behavioural responses, such as tremor and body spasm, and had a higher concentration of the parent compound imipramine in the serum and kidney and there was an increase in desipramine in the brain. Conclusion The absence of FMO1-mediated N-oxidation of imipramine results in enhanced central nervous system effects of the drug. The results provide insights into the metabolism of imipramine in the brain and may explain the basis of the adverse reactions to the drug seen in some patients. The knockout mouse line will provide a valuable resource for defining the role of FMO1 in the metabolism of drugs and other foreign chemicals.


Biochemical Pharmacology | 2015

The phenotype of a knockout mouse identifies flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic ageing

Sandra G. Gonzalez Malagon; Anna N. Melidoni; Diana Hernandez; Bilal A. Omar; Lyndsey Houseman; Sunil Veeravalli; Flora Scott; Dorsa Varshavi; Jeremy R. Everett; Yugo Tsuchiya; John F. Timms; Ian R. Phillips; Elizabeth A. Shephard

Graphical abstract


Biochemical Pharmacology | 2014

The phenotype of a flavin-containing monooyxgenase knockout mouse implicates the drug-metabolizing enzyme FMO1 as a novel regulator of energy balance.

Sunil Veeravalli; Bilal A. Omar; Lyndsey Houseman; Matthew Hancock; Sandra G. Gonzalez Malagon; Flora Scott; Azara Janmohamed; Ian R. Phillips; Elizabeth A. Shephard

Flavin-containing monooxygenases (FMOs) of mammals are thought to be involved exclusively in the metabolism of foreign chemicals. Here, we report the unexpected finding that mice lacking Fmos 1, 2 and 4 exhibit a lean phenotype and, despite similar food intake, weigh less and store less triglyceride in white adipose tissue (WAT) than wild-type mice. This is a consequence of enhanced whole-body energy expenditure, due mostly to increased resting energy expenditure (REE). This is fuelled, in part, by increased fatty acid β-oxidation in skeletal muscle, which would contribute to depletion of lipid stores in WAT. The enhanced energy expenditure is attributed, in part, to an increased capacity for exercise. There is no evidence that the enhanced REE is due to increased adaptive thermogenesis; instead, our results are consistent with the operation in WAT of a futile energy cycle. In contrast to FMO2 and FMO4, FMO1 is highly expressed in metabolic tissues, including liver, kidney, WAT and BAT. This and other evidence implicates FMO1 as underlying the phenotype. The identification of a novel, previously unsuspected, role for FMO1 as a regulator of energy homeostasis establishes, for the first time, a role for a mammalian FMO in endogenous metabolism. Thus, FMO1 can no longer be considered to function exclusively as a xenobiotic-metabolizing enzyme. Consequently, chronic administration of drugs that are substrates for FMO1 would be expected to affect energy homeostasis, via competition for endogenous substrates, and, thus, have important implications for the general health of patients and their response to drug therapy.


Drug Metabolism and Disposition | 2017

Identification of flavin-containing monooxygenase 5 (FMO5) as a regulator of glucose homeostasis and a potential sensor of gut bacteria

Flora Scott; Sandra G. Gonzalez Malagon; Brett A. O’Brien; Diede Fennema; Sunil Veeravalli; Clarissa R. Coveney; Ian R. Phillips; Elizabeth A. Shephard

We have previously identified flavin-containing monooxygenase 5 (FMO5) as a regulator of metabolic aging. The aim of the present study was to investigate the role of FMO5 in glucose homeostasis and the impact of diet and gut flora on the phenotype of mice in which the Fmo5 gene has been disrupted (Fmo5−/− mice). In comparison with wild-type (WT) counterparts, Fmo5−/− mice are resistant to age-related changes in glucose homeostasis and maintain the higher glucose tolerance and insulin sensitivity characteristic of young animals. When fed a high-fat diet, they are protected against weight gain and reduction of insulin sensitivity. The phenotype of Fmo5−/− mice is independent of diet and the gut microbiome and is determined solely by the host genotype. Fmo5−/− mice have metabolic characteristics similar to those of germ-free mice, indicating that FMO5 plays a role in sensing or responding to gut bacteria. In WT mice, FMO5 is present in the mucosal epithelium of the gastrointestinal tract where it is induced in response to a high-fat diet. In comparison with WT mice, Fmo5−/− mice have fewer colonic goblet cells, and they differ in the production of the colonic hormone resistin-like molecule β. Fmo5−/− mice have lower concentrations of tumor necrosis factor α in plasma and of complement component 3 in epididymal white adipose tissue, indicative of improved inflammatory tone. Our results implicate FMO5 as a regulator of body weight and of glucose disposal and insulin sensitivity and, thus, identify FMO5 as a potential novel therapeutic target for obesity and insulin resistance.


Journal of Biological Chemistry | 2001

Orphan Receptor Promiscuity in the Induction of Cytochromes P450 by Xenobiotics

Despina Smirlis; Roongsiri Muangmoonchai; Mina Edwards; Ian R. Phillips; Elizabeth A. Shephard


Journal of Biological Chemistry | 1988

The catalytic site of rat hepatic lauric acid omega-hydroxylase. Protein versus prosthetic heme alkylation in the omega-hydroxylation of acetylenic fatty acids.

Claire A. CaJacob; W K Chan; Elizabeth A. Shephard; P R Ortiz de Montellano

Collaboration


Dive into the Elizabeth A. Shephard's collaboration.

Top Co-Authors

Avatar

Ian R. Phillips

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Hernandez

University College London

View shared research outputs
Top Co-Authors

Avatar

Pritpal Chandan

University College London

View shared research outputs
Top Co-Authors

Avatar

Bilal A. Omar

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Flora Scott

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diede Fennema

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge