Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth B. Neely is active.

Publication


Featured researches published by Elizabeth B. Neely.


Antimicrobial Agents and Chemotherapy | 2004

Mouse Model of Cervicovaginal Toxicity and Inflammation for Preclinical Evaluation of Topical Vaginal Microbicides

Bradley J. Catalone; Tina Kish-Catalone; Lynn R. Budgeon; Elizabeth B. Neely; Maelee Ferguson; Fred C. Krebs; Mary K. Howett; Mohamed E. Labib; Robert R. Rando; Brian Wigdahl

ABSTRACT Clinical trials evaluating the efficacy of nonoxynol-9 (N-9) as a topical microbicide concluded that N-9 offers no in vivo protection against human immunodeficiency virus type 1 (HIV-1) infection, despite demonstrated in vitro inactivation of HIV-1 by N-9. These trials emphasize the need for better model systems to determine candidate microbicide effectiveness and safety in a preclinical setting. To that end, time-dependent in vitro cytotoxicity, as well as in vivo toxicity and inflammation, associated with N-9 exposure were characterized with the goal of validating a mouse model of microbicide toxicity. In vitro studies using submerged cell cultures indicated that human cervical epithelial cells were inherently more sensitive to N-9-mediated damage than human vaginal epithelial cells. These results correlated with in vivo findings obtained by using Swiss Webster mice in which intravaginal inoculation of 1% N-9 or Conceptrol gel (containing 4% N-9) resulted in selective and acute disruption of the cervical columnar epithelial cells 2 h postapplication accompanied by intense inflammatory infiltrates within the lamina propria. Although damage to the cervical epithelium was apparent out to 8 h postapplication, these tissues resembled control tissue by 24 h postapplication. In contrast, minimal damage and infiltration were associated with both short- and long-term exposure of the vaginal mucosa to either N-9 or Conceptrol. These analyses were extended to examine the relative toxicity of polyethylene hexamethylene biguanide (PEHMB), a polybiguanide compound under evaluation as a candidate topical microbicide. In similar studies, in vivo exposure to 1% PEHMB caused minimal damage and inflammation of the genital mucosa, a finding consistent with the demonstration that PEHMB was >350-fold less cytotoxic than N-9 in vitro. Collectively, these studies highlight the murine model of toxicity as a valuable tool for the preclinical assessment of toxicity and inflammation associated with exposure to candidate topical microbicides.


Neuropsychopharmacology | 2011

Gender and Iron Genes May Modify Associations Between Brain Iron and Memory in Healthy Aging

George Bartzokis; Po H. Lu; Kathleen Tingus; Douglas G. Peters; Chetan P. Amar; Todd A. Tishler; J. Paul Finn; Pablo Villablanca; Lori L. Altshuler; Jim Mintz; Elizabeth B. Neely; James R. Connor

Brain iron increases with age and is abnormally elevated early in the disease process in several neurodegenerative disorders that impact memory including Alzheimers disease (AD). Higher brain iron levels are associated with male gender and presence of highly prevalent allelic variants in genes encoding for iron metabolism proteins (hemochromatosis H63D (HFE H63D) and transferrin C2 (TfC2)). In this study, we examined whether in healthy older individuals memory performance is associated with increased brain iron, and whether gender and gene variant carrier (IRON+) vs noncarrier (IRON−) status (for HFE H63D/TfC2) modify the associations. Tissue iron deposited in ferritin molecules can be measured in vivo with magnetic resonance imaging utilizing the field-dependent relaxation rate increase (FDRI) method. FDRI was assessed in hippocampus, basal ganglia, and white matter, and IRON+ vs IRON− status was determined in a cohort of 63 healthy older individuals. Three cognitive domains were assessed: verbal memory (delayed recall), working memory/attention, and processing speed. Independent of gene status, worse verbal-memory performance was associated with higher hippocampal iron in men (r=−0.50, p=0.003) but not in women. Independent of gender, worse verbal working memory performance was associated with higher basal ganglia iron in IRON− group (r=−0.49, p=0.005) but not in the IRON+ group. Between-group interactions (p=0.006) were noted for both of these associations. No significant associations with white matter or processing speed were observed. The results suggest that in specific subgroups of healthy older individuals, higher accumulations of iron in vulnerable gray matter regions may adversely impact memory functions and could represent a risk factor for accelerated cognitive decline. Combining genetic and MRI biomarkers may provide opportunities to design primary prevention clinical trials that target high-risk groups.


Journal of Alzheimer's Disease | 2010

Prevalent iron metabolism gene variants associated with increased brain ferritin iron in healthy older men.

George Bartzokis; Po H. Lu; Todd A. Tishler; Douglas G. Peters; Anastasia Kosenko; Katherine A. Barrall; J. Paul Finn; Pablo Villablanca; Gerhard Laub; Lori L. Altshuler; Daniel H. Geschwind; Jim Mintz; Elizabeth B. Neely; James R. Connor

Prevalent gene variants involved in iron metabolism [hemochromatosis (HFE) H63D and transferrin C2 (TfC2)] have been associated with higher risk and earlier age at onset of Alzheimers disease (AD), especially in men. Brain iron increases with age, is higher in men, and is abnormally elevated in several neurodegenerative diseases, including AD and Parkinsons disease, where it has been reported to contribute to younger age at onset in men. The effects of the common genetic variants (HFE H63D and/or TfC2) on brain iron were studied across eight brain regions (caudate, putamen, globus pallidus, thalamus, hippocampus, white matter of frontal lobe, genu, and splenium of corpus callosum) in 66 healthy adults (35 men, 31 women) aged 55 to 76. The iron content of ferritin molecules (ferritin iron) in the brain was measured with MRI utilizing the Field Dependent Relaxation Rate Increase (FDRI) method. 47% of the sample carried neither genetic variant (IRON-) and 53% carried one and/or the other (IRON+). IRON+ men had significantly higher FDRI compared to IRON- men (p=0.013). This genotype effect was not observed in women who, as expected, had lower FDRI than men. This is the first published evidence that these highly prevalent genetic variants in iron metabolism genes can influence brain iron levels in men. Clinical phenomena such as differential gender-associated risks of developing neurodegenerative diseases and age at onset may be associated with interactions between iron genes and brain iron accumulation. Clarifying mechanisms of brain iron accumulation may help identify novel interventions for age-related neurodegenerative diseases.


Antimicrobial Agents and Chemotherapy | 2005

Comparative Safety Evaluation of the Candidate Vaginal Microbicide C31G

Bradley J. Catalone; Tina M. Kish-Catalone; Elizabeth B. Neely; Lynn R. Budgeon; Mary L. Ferguson; Catherine Stiller; Shendra R. Miller; Daniel Malamud; Fred C. Krebs; Mary K. Howett; Brian Wigdahl

ABSTRACT C31G is currently the focus of clinical trials designed to evaluate this agent as a microbicidal and spermicidal agent. In the following studies, the in vivo safety of C31G was assessed with a Swiss Webster mouse model of cervicovaginal toxicity and correlated with results from in vitro cytotoxicity experiments and published clinical observations. A single exposure of unformulated 1% C31G resulted in mild-to-moderate epithelial disruption and inflammation at 2 and 4 h postapplication. The columnar epithelium of the cervix was the primary site of damage, while no perturbation of the vaginal mucosa was observed. In contrast, application of unformulated 1.7% C31G resulted in greater levels of inflammation in the cervical epithelium at 2 h postapplication and severe epithelial disruption that persisted to 8 h postapplication. Application of a nonionic aqueous gel formulation containing 1% C31G resulted in no apparent cervicovaginal toxicity at any time point evaluated. However, formulation of 1.7% C31G did not substantially reduce the toxicity associated with unformulated C31G at that concentration. These observations correlate with findings gathered during a recent clinical trial, in which once-daily applications resulted in no adverse events in women receiving the formulation containing 1% C31G, compared to moderate-to-severe adverse events in 30% of women receiving the 1.7% C31G formulation. The Swiss Webster mouse model was able to effectively discriminate between concentrations and formulations of C31G that produced distinct clinical effects in human trials. The Swiss Webster animal model may be a highly valuable tool for preclinical evaluation of candidate vaginal microbicides.


Journal of Biological Chemistry | 2011

Mutant HFE H63D Protein Is Associated with Prolonged Endoplasmic Reticulum Stress and Increased Neuronal Vulnerability

Yiting Liu; Sang Y. Lee; Elizabeth B. Neely; Wint Nandar; Mthabisi Moyo; Zachary Simmons; James R. Connor

A specific polymorphism in the hemochromatosis (HFE) gene, H63D, is over-represented in neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer disease. Mutations of HFE are best known as being associated with cellular iron overload, but the mechanism by which HFE H63D might increase the risk of neuron degeneration is unclear. Here, using an inducible expression cell model developed from a human neuronal cell line SH-SY5Y, we reported that the presence of the HFE H63D protein activated the unfolded protein response (UPR). This response was followed by a persistent endoplasmic reticulum (ER) stress, as the signals of UPR sensors attenuated and followed by up-regulation of caspase-3 cleavage and activity. Our in vitro findings were recapitulated in a transgenic mouse model carrying Hfe H67D, the mouse equivalent of the human H63D mutation. In this model, UPR activation was detected in the lumbar spinal cord at 6 months then declined at 12 months in association with increased caspase-3 cleavage. Moreover, upon the prolonged ER stress, the number of cells expressing HFE H63D in early apoptosis was increased moderately. Cell proliferation was decreased without increased cell death. Additionally, despite increased iron level in cells carrying HFE H63D, it appeared that ER stress was not responsive to the change of cellular iron status. Overall, our studies indicate that the HFE H63D mutant protein is associated with prolonged ER stress and chronically increased neuronal vulnerability.


Biochimica et Biophysica Acta | 2013

A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice.

Wint Nandar; Elizabeth B. Neely; Erica L. Unger; James R. Connor

Because of the increasing evidence that H63D HFE polymorphism appears in higher frequency in neurodegenerative diseases, we evaluated the neurological consequences of H63D HFE in vivo using mice that carry H67D HFE (homologous to human H63D). Although total brain iron concentration did not change significantly in the H67D mice, brain iron management proteins expressions were altered significantly. The 6-month-old H67D mice had increased HFE and H-ferritin expression. At 12 months, H67D mice had increased H- and L-ferritin but decreased transferrin expression suggesting increased iron storage and decreased iron mobilization. Increased L-ferritin positive microglia in H67D mice suggests that microglia increase iron storage to maintain brain iron homeostasis. The 6-month-old H67D mice had increased levels of GFAP, increased oxidatively modified protein levels, and increased cystine/glutamate antiporter (xCT) and hemeoxygenase-1 (HO-1) expression indicating increased metabolic and oxidative stress. By 12 months, there was no longer increased astrogliosis or oxidative stress. The decrease in oxidative stress at 12 months could be related to an adaptive response by nuclear factor E2-related factor 2 (Nrf2) that regulates antioxidant enzymes expression and is increased in the H67D mice. These findings demonstrate that the H63D HFE impacts brain iron homeostasis, and promotes an environment of oxidative stress and induction of adaptive mechanisms. These data, along with literature reports on humans with HFE mutations provide the evidence to overturn the traditional paradigm that the brain is protected from HFE mutations. The H67D knock-in mouse can be used as a model to evaluate how the H63D HFE mutation contributes to neurodegenerative diseases.


Neurotoxicity Research | 2011

The Mechanism of Vanadium-Mediated Developmental Hypomyelination Is Related to Destruction of Oligodendrocyte Progenitors Through a Relationship with Ferritin and Iron

Bozho Todorich; James O. Olopade; Nodar Surguladze; Xuesheng Zhang; Elizabeth B. Neely; James R. Connor

The second post-natal week in rat is the period of the most intense oligodendrocyte development and myelination. This period coincides with peak iron import by oligodendrocytes. During that time oligodendrocyte progenitors (OPCs) are sensitive to agents that may disturb normal iron homeostasis and assimilation of iron into these cells. One mechanism by which iron homeostasis can be disrupted is by environmental exposure to other metals. Vanadium is a transition metal, and exposure to vanadium during early brain development produces hypomyelination with variety of related neuro-behavioral phenotypes. In the current study, we investigated mechanisms of hypomyelination induced by vanadium exposure in developing rat brain. We demonstrate that both in vivo and in vitro, OPCs are more sensitive to vanadium exposure than astrocytes or mature oligodendrocytes. Vanadium exposure in OPCs resulted in increased ROS generation and increased annexinV labeling suggestive of apoptosis. Because ferritin is a major iron delivery protein for oligodendrocytes, we exposed the cells to recombinant ferritin and iron both of which exacerbated vanadium cytotoxicity, while the iron chelator desferroxamine (DFO) prevented cytotoxic/apoptotic effects of vanadium. To illustrate relationship between ferritin and vanadium, we demonstrate that vanadium exacerbated DNA nicking produced by iron-rich spleen ferritin, but not iron-poor apoferritin, resulting in a single and double strand breaks in a DNA relaxation assay. We propose that developmental exposure to vanadium interferes with normal iron assimilation into oligodendrocytes resulting in oxidative stress and apoptosis. Therefore, depletion of OPCs due to vanadium exposure in early post-natal period may be an important mechanism of vanadium-induced hypomyelination.


Neurobiology of Aging | 2014

H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment

Fatima Ali-Rahmani; Patricia S. Grigson; Sang Y. Lee; Elizabeth B. Neely; James R. Connor; Cara-Lynne Schengrund

The H63D variant of the hemochromatosis (HFE) gene, when expressed in carriers of the apolipoprotein E4 allele, is implicated as a risk factor for earlier onset of Alzheimers disease (AD). We tested the hypothesis that like expression of apolipoprotein E4, expression of H63D-HFE disrupts cholesterol metabolism contributing to an increase in neurodegeneration and memory deficits. Analysis of SH-SY5Y human neuroblastoma cells transfected to stably express either wild type- (WT) or H63D-HFE indicated about a 50% reduction in cholesterol content in cells expressing H63D-HFE. This was accompanied by a significant decrease in expression of 3-hydroxy-3-methyl-glutaryl-CoA reductase, and a significant increase in expression of cholesterol 24-hydroxylase. Consistent with these studies, H67D-HFE (orthologous to human H63D-HFE) knock-in mice, showed a greater age dependent decline in brain cholesterol than WT-HFE animals and changes in expression of proteins regulating cholesterol metabolism. Brains of aged H67D-HFE mice also exhibited a significant decrease in expression of synapse proteins and a significant increase in caspase-3 expression relative to WT-HFE controls. H67D-HFE mice also had a greater reduction in brain volume and poorer recognition and spatial memory than WT-HFE mice, symptoms associated with AD. These results indicate that the alterations in cholesterol metabolism associated with expression of H63D-HFE may contribute to the development of AD.


Journal of Human Lactation | 2006

Biochemical Analysis of Human Milk Treated With Sodium Dodecyl Sulfate, an Alkyl Sulfate Microbicide That Inactivates Human Immunodeficiency Virus Type 1

Sandra Urdaneta Hartmann; Brian Wigdahl; Elizabeth B. Neely; Cheston M. Berlin; Cara-Lynne Schengrund; Hung-Mo Lin; Mary K. Howett

Reduction of transmission of human immunodeficiency virus type 1 (HIV-1) through human milk is needed. Alkyl sulfates such as sodium dodecyl sulfate (SDS) are microbicidal against HIV-1 at low concentrations, have little to no toxicity, and are inexpensive. The authors have reported that treatment of HIV-1-infected human milk with ≤ 1% (10 mg/mL) SDS for 10 minutes inactivates cell-free and cell-associated virus. The SDS can be removed with a commercially available resin after treatment without recovery of viral infectivity. In this article, the authors report results of selective biochemical analyses (ie, protein, immunoglobulins, lipids, cells, and electrolytes) of human milk subjected to SDS treatment and removal. The SDS treatment or removal had no significant effects on the milk components studied. Therefore, the use of alkyl sulfate microbicides to treat milk from HIV-1-positive women may be a simple, practical, and nutritionally sound way to prevent or reduce transmission of HIV-1 while still feeding with mother’s own milk.


Retrovirology | 2005

Inactivation of HIV-1 in breast milk by treatment with the alkyl sulfate microbicide sodium dodecyl sulfate (SDS)

Sandra Urdaneta; Brian Wigdahl; Elizabeth B. Neely; Cheston M. Berlin; Cara-Lynne Schengrund; Hung-Mo Lin; Mary K. Howett

BackgroundReducing transmission of HIV-1 through breast milk is needed to help decrease the burden of pediatric HIV/AIDS in society. We have previously reported that alkyl sulfates (i.e., sodium dodecyl sulfate, SDS) are microbicidal against HIV-1 at low concentrations, are biodegradable, have little/no toxicity and are inexpensive. Therefore, they may be used for treatment of HIV-1 infected breast milk. In this report, human milk was artificially infected by adding to it HIV-1 (cell-free or cell-associated) and treated with ≤1% SDS (≤10 mg/ml). Microbicidal treatment was at 37°C or room temperature for 10 min. SDS removal was performed with a commercially available resin. Infectivity of HIV-1 and HIV-1 load in breast milk were determined after treatment.ResultsSDS (≥0.1%) was virucidal against cell-free and cell-associated HIV-1 in breast milk. SDS could be substantially removed from breast milk, without recovery of viral infectivity. Viral load in artificially infected milk was reduced to undetectable levels after treatment with 0.1% SDS. SDS was virucidal against HIV-1 in human milk and could be removed from breast milk if necessary. Milk was not infectious after SDS removal.ConclusionThe proposed treatment concentrations are within reported safe limits for ingestion of SDS by children of 1 g/kg/day. Therefore, use of alkyl sulfate microbicides, such as SDS, to treat HIV1-infected breast milk may be a novel alternative to help prevent/reduce transmission of HIV-1 through breastfeeding.

Collaboration


Dive into the Elizabeth B. Neely's collaboration.

Top Co-Authors

Avatar

James R. Connor

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wint Nandar

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Zachary Simmons

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda M. Snyder

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Lynn R. Budgeon

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Anne M. Nixon

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Cara-Lynne Schengrund

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Carson J. Purnell

Penn State Milton S. Hershey Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge