Elizabeth B. Watson
Academy of Natural Sciences of Drexel University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth B. Watson.
Ecological Applications | 2014
Cathleen Wigand; Charles T. Roman; Earl Davey; Mark H. Stolt; Roxanne Johnson; Alana Hanson; Elizabeth B. Watson; S. Bradley Moran; Donald R. Cahoon; James C. Lynch; Patricia Rafferty
Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.
The Holocene | 2010
Andrew B. Gray; Gregory B. Pasternack; Elizabeth B. Watson
Pretreatment of sediment with hydrogen peroxide to remove organic constituents and aid deflocculation is a common component of particle size analyses of terrestrial and marine sediments. This study quantitatively determined the effect of a range of treatment levels on particle size distribution among four sediment types representing a range of mineral/organic particle size distributions, organic content and particle characterisation (charcoal or detrital plant material). The hypothesis was that complete removal of organic particles would lead to improved repeatability of results for a given sample and treatment level. Repeatability was assessed with a coefficient of variance calculation and a comparison of particle size distribution patterns within and across treatments. The effect of treatment levels on commonly used distribution descriptors (e.g. texture ratios and measures of central tendency) were then examined for each sample. Samples characterised primarily by detrital material responded most readily to treatment, whereas charcoal-dominated samples required higher levels of treatment to achieve increased repeatability and disappearance of large organic particles. Certain distribution descriptors, such as modal analysis, were found to be more resilient to organic particle presence, although amplitude of the organic distribution and the degree of overlap with the inorganic signal in some cases obscured even this metric. Thus, final treatment recommendations are based on sample characteristics and the types of distribution descriptors used in a study.
Estuaries and Coasts | 2017
Cathleen Wigand; Thomas Ardito; Caitlin Chaffee; Wenley Ferguson; Suzanne Paton; Kenneth B. Raposa; Charles Vandemoer; Elizabeth B. Watson
Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coastal systems faced with deteriorating habitat, accelerated sea level rise, and changes in precipitation and storm patterns.
Journal of Coastal Research | 2012
Elizabeth B. Watson; Roger Byrne
Abstract WATSON, E.B. and BYRNE, R., 2012. Recent (1975–2004) vegetation change in the San Francisco Estuary, California, tidal marshes. The establishment and monitoring of vegetation plots provide unique information on the spatiotemporal dynamics of plant distributions. In 1975, U.S. Geological Survey (USGS) scientists Atwater and Hedel established vegetation transects at six tidal marshes spanning the salinity gradient of the San Francisco Estuary, California, to establish a baseline against which future vegetation changes could be measured. Since 1975, estuarine salinity has increased because of water diversion, whereas sea level has risen at rates that exceed late-Holocene background levels. During the summers of 2003–04, we reoccupied these transects and measured plant composition to better understand the response of marsh vegetation to these hydrologic changes. Our results indicate that during the past 30 years, Sarcocornia pacifica, the most salt-tolerant plant species, increased in cover, whereas Schoenoplectus californicus, the least salt-tolerant plant species, decreased in cover. We hypothesize that increasing estuarine salinity resulted in these shifts. Additionally, Distichlis spicata has experienced large-scale replacement, predominantly by Schoenoplectus americanus. Because Distichlis spicata was found to be associated most strongly with high relative marsh elevations, we hypothesize that the decline in this species is a consequence of accelerated sea level rise. The vegetation changes observed in San Francisco Estuary marshes reported here are consistent throughout the estuary and have been observed in other studies and, therefore, serve as a guide to better understand the consequences of anthropogenically driven environmental change to estuarine wetlands.
Estuaries and Coasts | 2013
Elizabeth B. Watson; Roger Byrne
Currently, the largest tidal wetlands restoration project on the US Pacific Coast is being planned and implemented in southern San Francisco Bay; however, knowledge of baseline conditions of salt marsh extent in the region prior to European settlement is limited. Here, analysis of 24 sediment cores collected from ten intact southern San Francisco Bay tidal marshes were used to reconstruct spatio-temporal patterns of marsh expansion to provide historic context for current restoration efforts. A process-based marsh elevation simulation model was used to identify interactions between sediment supply, sea-level rise, and marsh formation rates. A distinct age gradient was found: expansion of marshes in the central portion of southern San Francisco Bay dated to 500 to 1500 calendar years before present, while expansion of marshes in southernmost San Francisco Bay dated to 200 to 700 calendar years before present. Thus, much of the tidal marsh area mapped by US Coast Survey during the 1853–1857 period were in fact not primeval tidal marshes that had persisted for millennia but were recently formed landscapes. Marsh expansion increased during the Little Ice Age, when freshwater inflow and sediment influx were higher than during the previous millennium, and also during settlement, when land use changes, such as introduction of livestock, increased watershed erosion, and sediment delivery.
Science of The Total Environment | 2016
Andrew B Gray; Gregory B. Pasternack; Elizabeth B. Watson; Miguel A. Goñi; Jeff A. Hatten; Jonathan A. Warrick
This study is an investigation into the roles of wildfire and changing agricultural practices in controlling the inter-decadal scale trends of suspended sediment production from semi-arid mountainous rivers. In the test case, a decreasing trend in suspended sediment concentrations was found in the lower Salinas River, California between 1967 and 2011. Event to decadal scale patterns in sediment production in the Salinas River have been found to be largely controlled by antecedent hydrologic conditions. Decreasing suspended sediment concentrations over the last 15years of the record departed from those expected from climatic/hydrologic forcing. Sediment production from the mountainous headwaters of the central California Coast Ranges is known to be dominated by the interaction of wildfire and large rainfall/runoff events, including the Arroyo Seco, an ~700km(2) subbasin of the Salinas River. However, the decreasing trend in Salinas River suspended sediment concentrations run contrary to increases in the watersheds effective burn area over time. The sediment source area of the Salinas River is an order of magnitude larger than that of the Arroyo Seco, and includes a more complicated mosaic of land cover and land use. The departure from hydrologic forcings on suspended sediment concentration patterns was found to coincide with a rapid conversion of irrigation practices from sprinkler and furrow to subsurface drip irrigation. Changes in agricultural operations appear to have decreased sediment supply to the Salinas River over the late 20th to early 21st centuries, obscuring the influence of wildfire on suspended sediment production.
PLOS ONE | 2016
Cathleen Wigand; Karen Sundberg; Alana Hanson; Earl Davey; Roxanne Johnson; Elizabeth B. Watson; James T. Morris
Climate change is altering sea level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin layer sand or sediment application to drowning and eroding marshes is one approach to build elevation and resilience. The above- and below-ground structure, soil carbon dioxide emissions, and pore water constituents in vegetated natural marsh sediments and sand-amended sediments were examined at varying inundation regimes between mean sea level and mean high water (0.82 m NAVD88 to 1.49 m NAVD88) in a field experiment at Laws Point, part of the Plum Island Sound Estuary (MA). Significantly lower salinities, pH, sulfides, phosphates, and ammonium were measured in the sand-amended sediments than in the natural sediments. In natural sediments there was a pattern of increasing salinity with increasing elevation while in the sand-amended sediments the trend was reversed, showing decreasing salinity with increasing elevation. Sulfide concentrations generally increased from low to high inundation with highest concentrations at the highest inundation (i.e., at the lowest elevations). High pore water phosphate concentrations were measured at low elevations in the natural sediments, but the sand-amended treatments had mostly low concentrations of phosphate and no consistent pattern with elevation. At the end of the experiment the lowest elevations generally had the highest measures of pore water ammonium. Soil carbon dioxide emissions were greatest in the sand-amended mesocosms and at higher elevations. Differences in coarse root and rhizome abundances and volumes among the sediment treatments were detected with CT imaging, but by 20 weeks the natural and sand-amended treatments showed similar total belowground biomass at the intermediate and high elevations. Although differences in pore water nutrient concentrations, pH, salinity, and belowground root and rhizome morphology were detected between the natural and sand-amended sediments, similar belowground productivity and total biomass were measured by the end of the growing season. Since the belowground productivity supports organic matter accumulation and peat buildup in marshes, our results suggest that thin layer sand or sediment application is a viable climate adaptation action to build elevation and coastal resiliency, especially in areas with low natural sediment supplies.
Scientific Reports | 2018
James R. Holmquist; Lisamarie Windham-Myers; Norman Bliss; Stephen Crooks; James T. Morris; J. Patrick Megonigal; Tiffany G. Troxler; Donald E. Weller; John C. Callaway; Judith Z. Drexler; Matthew C. Ferner; Meagan Eagle Gonneea; Kevin D. Kroeger; Lisa Schile-Beers; Isa Woo; Kevin J. Buffington; Joshua L. Breithaupt; Brandon M. Boyd; Lauren Brown; Nicole Dix; Lyndie Hice; Benjamin P. Horton; Glen M. MacDonald; Ryan P. Moyer; William G. Reay; Timothy J. Shaw; Erik M. Smith; Joseph M. Smoak; Christopher K. Sommerfield; Karen M. Thorne
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
PeerJ | 2018
Kenneth B. Raposa; Richard A. McKinney; Cathleen Wigand; Jeffrey W. Hollister; Cassie Lovall; Katelyn Szura; John A. Gurak; Jason McNamee; Christopher Raithel; Elizabeth B. Watson
Southern New England salt marsh vegetation and habitats are changing rapidly in response to sea-level rise. At the same time, fiddler crab (Uca spp.) distributions have expanded and purple marsh crab (Sesarma reticulatum) grazing on creekbank vegetation has increased. Sea-level rise and reduced predation pressure drive these changing crab populations but most studies focus on one species; there is a need for community-level assessments of impacts from multiple crab species. There is also a need to identify additional factors that can affect crab populations. We sampled crabs and environmental parameters in four Rhode Island salt marshes in 2014 and compiled existing data to quantify trends in crab abundance and multiple factors that potentially affect crabs. Crab communities were dominated by fiddler and green crabs (Carcinus maenas); S. reticulatum was much less abundant. Burrow sizes suggest that Uca is responsible for most burrows. On the marsh platform, burrows and Carcinus abundance were negatively correlated with elevation, soil moisture, and soil percent organic matter and positively correlated with soil bulk density. Uca abundance was negatively correlated with Spartina patens cover and height and positively correlated with Spartina alterniflora cover and soil shear strength. Creekbank burrow density increased dramatically between 1998 and 2016. During the same time, fishing effort and the abundance of birds that prey on crabs decreased, and water levels increased. Unlike in other southern New England marshes where recreational overfishing is hypothesized to drive increasing marsh crab abundance, we propose that changes in crab abundance were likely unrelated to recreational finfish over-harvest; instead, they better track sea-level rise and changing abundances of alternate predators, such as birds. We predict that marsh crab abundance will continue to expand with ongoing sea-level rise, at least until inundation thresholds for crab survival are exceeded.
Marine Environmental Research | 2018
Elizabeth B. Watson; Elisabeth Powell; Nicole P. Maher; Autumn Oczkowski; Bhanu Paudel; Adam Starke; Katelyn Szura; Cathleen Wigand
Roughly eight million people live on Long Island, including Brooklyn and Queens, and despite improvements in wastewater treatment, nearly all its coastal waterbodies are impaired by excessive nitrogen. We used nutrient stoichiometry and stable isotope ratios in estuarine biota and soils to identify water pollution hot spots and compare among potential indicators. We found strong gradients in δ15N values, which were correlated with watershed land cover, population density, and wastewater discharges. Weaker correlations were found for δ13C values and nutrient stoichiometric ratios. Structural equation modeling identified contrasts between western Long Island, where δ15N values depended on watershed population density, and eastern Long Island where δ15N values reflected agriculture and sewage discharges. These results illustrate the use of stable isotopes as water quality indicators, and establish a baseline against which the efficacy of strategies to reduce nutrients can be measured.