Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth C. Engle is active.

Publication


Featured researches published by Elizabeth C. Engle.


Cell | 2010

Human TUBB3 Mutations Perturb Microtubule Dynamics, Kinesin Interactions, and Axon Guidance

Max A. Tischfield; Hagit Baris; Chen Wu; G. Rudolph; Lionel Van Maldergem; Wei He; Wai Man Chan; Caroline Andrews; Joseph L. Demer; Richard L. Robertson; David A. Mackey; Jonathan B Ruddle; Bird Td; Irene Gottlob; Christina Pieh; Elias I. Traboulsi; Scott L. Pomeroy; David G. Hunter; Janet S. Soul; Anna Newlin; Louise J. Sabol; Edward J. Doherty; Clara E. de Uzcátegui; Nicolas Uzcategui; Mary Louise Z Collins; Emin Cumhur Sener; Bettina Wabbels; Heide Hellebrand; Thomas Meitinger; Teresa de Berardinis

We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific beta-tubulin isotype III, result in a spectrum of human nervous system disorders that we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show that the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate that normal TUBB3 is required for axon guidance and maintenance in mammals.


Nature Genetics | 2005

Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development

Max A. Tischfield; Thomas M. Bosley; Mustafa A. Salih; Ibrahim A. Alorainy; Emin Cumhur Sener; Michael J Nester; Darren T. Oystreck; Wai-Man Chan; Caroline Andrews; Robert P. Erickson; Elizabeth C. Engle

We identified homozygous truncating mutations in HOXA1 in three genetically isolated human populations. The resulting phenotype includes horizontal gaze abnormalities, deafness, facial weakness, hypoventilation, vascular malformations of the internal carotid arteries and cardiac outflow tract, mental retardation and autism spectrum disorder. This is the first report to our knowledge of viable homozygous truncating mutations in any human HOX gene and of a mendelian disorder resulting from mutations in a human HOX gene critical for development of the central nervous system.


Nature Genetics | 2003

Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1).

Koki Yamada; Caroline Andrews; Wai Man Chan; Craig A. McKeown; Adriano Magli; Teresa de Berardinis; Anat Loewenstein; Moshe Lazar; Michael O'Keefe; Robert D. Letson; Arnold London; Mark S. Ruttum; Naomichi Matsumoto; Nakamichi Saito; Lisa Morris; Monte A. Del Monte; Roger H. Johnson; Eiichiro Uyama; Willem A. Houtman; Berendina De Vries; Thomas J. Carlow; Blaine L. Hart; Nicolas Krawiecki; John M. Shoffner; Marlene C. Vogel; James A. Katowitz; Scott M. Goldstein; Alex V. Levin; Emin Cumhur Sener; Banu T. Öztürk

Congenital fibrosis of the extraocular muscles type 1 (CFEOM1; OMIM #135700) is an autosomal dominant strabismus disorder associated with defects of the oculomotor nerve. We show that individuals with CFEOM1 harbor heterozygous missense mutations in a kinesin motor protein encoded by KIF21A. We identified six different mutations in 44 of 45 probands. The primary mutational hotspots are in the stalk domain, highlighting an important new role for KIF21A and its stalk in the formation of the oculomotor axis.


American Journal of Medical Genetics | 2010

Deletions of NRXN1 (Neurexin-1) Predispose to a Wide Spectrum of Developmental Disorders

Michael S L Ching; Yiping Shen; Wen-Hann Tan; Shafali S. Jeste; Eric M. Morrow; Xiaoli Chen; Nahit Motavalli Mukaddes; Seung Yun Yoo; Ellen Hanson; Rachel Hundley; Christina Austin; Ronald Becker; Gerard T. Berry; Katherine Driscoll; Elizabeth C. Engle; Sandra L. Friedman; James F. Gusella; Fuki M. Hisama; Mira Irons; Tina Lafiosca; Elaine LeClair; David T. Miller; Michael Neessen; Jonathan Picker; Leonard Rappaport; Cynthia M. Rooney; Dean Sarco; Joan M. Stoler; Christopher A. Walsh; Robert Wolff

Research has implicated mutations in the gene for neurexin‐1 (NRXN1) in a variety of conditions including autism, schizophrenia, and nicotine dependence. To our knowledge, there have been no published reports describing the breadth of the phenotype associated with mutations in NRXN1. We present a medical record review of subjects with deletions involving exonic sequences of NRXN1. We ascertained cases from 3,540 individuals referred clinically for comparative genomic hybridization testing from March 2007 to January 2009. Twelve subjects were identified with exonic deletions. The phenotype of individuals with NRXN1 deletion is variable and includes autism spectrum disorders, mental retardation, language delays, and hypotonia. There was a statistically significant increase in NRXN1 deletion in our clinical sample compared to control populations described in the literature (P = 8.9 × 10−7). Three additional subjects with NRXN1 deletions and autism were identified through the Homozygosity Mapping Collaborative for Autism, and this deletion segregated with the phenotype. Our study indicates that deletions of NRXN1 predispose to a wide spectrum of developmental disorders.


Nature Genetics | 2001

Homozygous mutations in ARIX(PHOX2A) result in congenital fibrosis of the extraocular muscles type 2.

Motoi Nakano; Koki Yamada; Jennifer Fain; Emin Cumhur Sener; Carol Selleck; Abdulaziz H. Awad; Johan Zwaan; Paul B. Mullaney; Thomas M. Bosley; Elizabeth C. Engle

Isolated strabismus affects 1–5% of the general population. Most forms of strabismus are multifactorial in origin; although there is probably an inherited component, the genetics of these disorders remain unclear. The congenital fibrosis syndromes (CFS) represent a subset of monogenic isolated strabismic disorders that are characterized by restrictive ophthalmoplegia, and include congenital fibrosis of the extraocular muscles (CFEOM) and Duane syndrome (DURS). Neuropathologic studies indicate that these disorders may result from the maldevelopment of the oculomotor (nIII), trochlear (nIV) and abducens (nVI) cranial nerve nuclei. To date, five CFS loci have been mapped (FEOM1, FEOM2, FEOM3, DURS1 and DURS2), but no genes have been identified. Here, we report three mutations in ARIX (also known as PHOX2A) in four CFEOM2 pedigrees. ARIX encodes a homeodomain transcription factor protein previously shown to be required for nIII/nIV development in mouse and zebrafish. Two of the mutations are predicted to disrupt splicing, whereas the third alters an amino acid within the conserved brachyury-like domain. These findings confirm the hypothesis that CFEOM2 results from the abnormal development of nIII/nIV (ref. 7) and emphasize a critical role for ARIX in the development of these midbrain motor nuclei.


Current Opinion in Genetics & Development | 2011

Phenotypic spectrum of the tubulin-related disorders and functional implications of disease-causing mutations

Max A. Tischfield; Gustav Y. Cederquist; Mohan L. Gupta; Elizabeth C. Engle

A spectrum of neurological disorders characterized by abnormal neuronal migration, differentiation, and axon guidance and maintenance have recently been attributed to missense and splice-site mutations in the genes that encode α-tubulin and β-tubulin isotypes TUBA1A, TUBA8, TUBB2B, and TUBB3, all of which putatively coassemble into neuronal microtubules. The resulting nervous system malformations can include different types of cortical malformations, defects in commissural fiber tracts, and degeneration of motor and sensory axons. Many clinical phenotypes and brain malformations are shared among the various mutations regardless of structural location and/or isotype, while others segregate with distinct amino acids or functional domains within tubulin. Collectively, these disorders provide novel paradigms for understanding the biological functions of microtubules and their core components in normal health and disease.


Cold Spring Harbor Perspectives in Biology | 2010

Human Genetic Disorders of Axon Guidance

Elizabeth C. Engle

This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders.


Ophthalmology | 2011

Structural Grading of Foveal Hypoplasia Using Spectral-Domain Optical Coherence Tomography: A Predictor of Visual Acuity?

Mervyn G. Thomas; Anil Kumar; Sarim Mohammad; Frank A. Proudlock; Elizabeth C. Engle; Caroline Andrews; Wai-Man Chan; Shery Thomas; Irene Gottlob

PURPOSE To characterize and grade the spectrum of foveal hypoplasia based on different stages of arrested development of the fovea. Grading was performed using morphologic findings obtained by ultra high-resolution spectral-domain optical coherence tomography. Best-corrected visual acuity (BCVA) was calculated for different grades. DESIGN Observational case series. PARTICIPANTS AND CONTROLS Sixty-nine patients with foveal hypoplasia (albinism, n = 34; PAX6 mutations, n = 10; isolated cases, n = 14; achromatopsia, n = 11) and 65 control subjects were examined. METHODS A 7×7-mm retinal area was sampled using a 3-dimensional scanning protocol (743×75, A scans×B scans) with ultra high-resolution spectral-domain optical coherence tomography (SOCT Copernicus HR; 3-μm axial resolution). Gross morphologic abnormalities were documented. B-scans at the fovea were segmented using a longitudinal reflectivity profile. Logarithm of the minimum angle of resolution BCVA was obtained. MAIN OUTCOME MEASURES Grading was based on presence or absence of foveal pit and widening of the outer nuclear layer (ONL) and outer segment (OS) at the fovea. Quantitative measurements were obtained for comparing atypical foveal hypoplasia in achromatopsia. Best-corrected visual acuity was compared with the grade of foveal hypoplasia. RESULTS Four grades of foveal hypoplasia were distinguished: grade 1, shallow foveal pit, presence of ONL widening, presence of OS lengthening; grade 2, grade 1 but absence of foveal pit; grade 3, grade 2 but absence of OS lengthening; grade 4, grade 3 but absence of ONL widening. There was significant difference in visual acuity (VA) associated with each grade (P<0.0001). Grade 1 was associated with the best VA (median VA, 0.2), whereas grades 2, 3, and 4 were associated with progressively poorer VA with a median VA of 0.44, 0.60, and 0.78, respectively. The atypical features seen with foveal hypoplasia associated with achromatopsia were characterized by decreased retinal and ONL thickness and deeper foveal depth. CONCLUSIONS A structural grading system for foveal hypoplasia was developed based on the stage at which foveal development was arrested, which helps to provide a prognostic indicator for VA and is applicable in a range of disorders associated with foveal hypoplasia. Atypical foveal hypoplasia in achromatopsia shows different characteristics. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Science | 2008

Human CHN1 Mutations Hyperactivate α2-Chimaerin and Cause Duane's Retraction Syndrome

Noriko Miyake; John K. Chilton; Maria Psatha; Long Cheng; Caroline Andrews; Wai-Man Chan; Krystal Law; Moira Crosier; Susan Lindsay; Michelle C.M. Cheung; James P. Allen; Nick J. Gutowski; Sian Ellard; Elizabeth Young; Alessandro Iannaccone; Binoy Appukuttan; J. Timothy Stout; Stephen P. Christiansen; Maria Laura Ciccarelli; Alfonso Baldi; Mara Campioni; Juan Carlos Zenteno; Dominic Davenport; Laura E. Mariani; Mustafa Sahin; Sarah Guthrie; Elizabeth C. Engle

Duanes retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1, a gene on chromosome 2q31 that encodes α2-chimaerin, a Rac guanosine triphosphatase–activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase α2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance α2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant α2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that α2-chimaerin has a critical developmental function in ocular motor axon pathfinding.


Science | 2008

Human CHN1 Mutations Hyperactivate α2-Chimaerin and Cause Duanes Retraction Syndrome

Noriko Miyake; John K. Chilton; Maria Psatha; Long Cheng; Caroline Andrews; Wai-Man Chan; Krystal Law; Moira Crosier; Susan Lindsay; Michelle C.M. Cheung; James P. Allen; Nick J. Gutowski; Sian Ellard; Elizabeth Young; Alessandro Iannaccone; Binoy Appukuttan; J. Timothy Stout; Stephen P. Christiansen; Maria Laura Ciccarelli; Alfonso Baldi; Mara Campioni; Juan Carlos Zenteno; Dominic Davenport; Laura E. Mariani; Mustafa Sahin; Sarah Guthrie; Elizabeth C. Engle

Duanes retraction syndrome (DRS) is a complex congenital eye movement disorder caused by aberrant innervation of the extraocular muscles by axons of brainstem motor neurons. Studying families with a variant form of the disorder (DURS2-DRS), we have identified causative heterozygous missense mutations in CHN1, a gene on chromosome 2q31 that encodes α2-chimaerin, a Rac guanosine triphosphatase–activating protein (RacGAP) signaling protein previously implicated in the pathfinding of corticospinal axons in mice. We found that these are gain-of-function mutations that increase α2-chimaerin RacGAP activity in vitro. Several of the mutations appeared to enhance α2-chimaerin translocation to the cell membrane or enhance its ability to self-associate. Expression of mutant α2-chimaerin constructs in chick embryos resulted in failure of oculomotor axons to innervate their target extraocular muscles. We conclude that α2-chimaerin has a critical developmental function in ocular motor axon pathfinding.

Collaboration


Dive into the Elizabeth C. Engle's collaboration.

Top Co-Authors

Avatar

Caroline Andrews

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Wai-Man Chan

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

David G. Hunter

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max A. Tischfield

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge