Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth C. Ledgerwood is active.

Publication


Featured researches published by Elizabeth C. Ledgerwood.


Journal of Biological Chemistry | 2001

Selective targeting of a redox-active ubiquinone to mitochondria within cells : antioxidant and antiapoptotic properties

Geoffrey F. Kelso; Carolyn M. Porteous; Carolyn V. Coulter; Gillian Hughes; William K. Porteous; Elizabeth C. Ledgerwood; Robin A. J. Smith; Michael P. Murphy

With the recognition of the central role of mitochondria in apoptosis, there is a need to develop specific tools to manipulate mitochondrial function within cells. Here we report on the development of a novel antioxidant that selectively blocks mitochondrial oxidative damage, enabling the roles of mitochondrial oxidative stress in different types of cell death to be inferred. This antioxidant, named mitoQ, is a ubiquinone derivative targeted to mitochondria by covalent attachment to a lipophilic triphenylphosphonium cation through an aliphatic carbon chain. Due to the large mitochondrial membrane potential, the cation was accumulated within mitochondria inside cells, where the ubiquinone moiety inserted into the lipid bilayer and was reduced by the respiratory chain. The ubiquinol derivative thus formed was an effective antioxidant that prevented lipid peroxidation and protected mitochondria from oxidative damage. After detoxifying a reactive oxygen species, the ubiquinol moiety was regenerated by the respiratory chain enabling its antioxidant activity to be recycled. In cell culture studies, the mitochondrially localized antioxidant protected mammalian cells from hydrogen peroxide-induced apoptosis but not from apoptosis induced by staurosporine or tumor necrosis factor-α. This was compared with untargeted ubiquinone analogs, which were ineffective in preventing apoptosis. These results suggest that mitochondrial oxidative stress may be a critical step in apoptosis induced by hydrogen peroxide but not for apoptosis induced by staurosporine or tumor necrosis factor-α. We have shown that selectively manipulating mitochondrial antioxidant status with targeted and recyclable antioxidants is a feasible approach to investigate the role of mitochondrial oxidative damage in apoptotic cell death. This approach will have further applications in investigating mitochondrial dysfunction in a range of experimental models.


FEBS Letters | 2000

Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells

Jared L. Scarlett; Philip W. Sheard; Gillian Hughes; Elizabeth C. Ledgerwood; Hung-Hai Ku; Michael P. Murphy

Cytochrome c release from mitochondria is central to apoptosis, but the events leading up to it are disputed. The mitochondrial membrane potential has been reported to decrease, increase or remain unchanged during cytochrome c release. We measured mitochondrial membrane potential in Jurkat cells undergoing apoptosis by the uptake of the radiolabelled lipophilic cation TPMP, enabling small changes in potential to be determined. The ATP/ADP ratio, mitochondrial and cell volumes, plasma membrane potential and the mitochondrial membrane potential in permeabilised cells were also measured. Before cytochrome c release the mitochondrial membrane potential increased, followed by a decrease in potential associated with mitochondrial swelling and the release of cytochrome c and DDP‐1, an intermembrane space house keeping protein. Mitochondrial swelling and cytochrome c release were both blocked by bongkrekic acid, an inhibitor of the permeability transition. We conclude that during apoptosis mitochondria undergo an initial priming phase associated with hyperpolarisation which leads to an effector phase, during which mitochondria swell and release cytochrome c.


Nature Genetics | 2008

A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia.

Ian M. Morison; Elisabeth Cramer Bordé; Emma J Cheesman; Pak Leng Cheong; Andrew John Holyoake; Serge Fichelson; Robert J. Weeks; Alexandra Lo; Stefan M.K Davies; Sigurd M. Wilbanks; Robert D. Fagerlund; Mathew W Ludgate; Fernanda da Silva Tatley; Melanie S. Coker; Nicholas Bockett; Gillian Hughes; Diana A Pippig; Mark P Smith; Claude Capron; Elizabeth C. Ledgerwood

We report the first identified mutation in the gene encoding human cytochrome c (CYCS). Glycine 41, invariant throughout eukaryotes, is substituted by serine in a family with autosomal dominant thrombocytopenia caused by dysregulated platelet formation. The mutation yields a cytochrome c variant with enhanced apoptotic activity in vitro. Notably, the family has no other phenotypic indication of abnormal apoptosis, implying that cytochrome c activity is not a critical regulator of most physiological apoptosis.


Annals of the New York Academy of Sciences | 2002

Prevention of Mitochondrial Oxidative Damage Using Targeted Antioxidants

Geoffrey F. Kelso; Carolyn M. Porteous; Gillian Hughes; Elizabeth C. Ledgerwood; Alison M. Gane; Robin A. J. Smith; Michael P. Murphy

Mitochondrial‐targeted antioxidants that selectively block mitochondrial oxidative damage and prevent some types of cell death have been developed. These antioxidants are ubiquinone and tocopherol derivatives and are targeted to mitochondria by covalent attachment to a lipophilic triphenylphosphonium cation. Because of the large mitochondrial membrane potential, these cations accumulated within mitochondria inside cells, where the antioxidant moiety prevents lipid peroxidation and protects mitochondria from oxidative damage. The mitochondrially localized ubiquinone also protected mammalian cells from hydrogen peroxide‐induced apoptosis while an untargeted ubiquinone analogue was ineffective against apoptosis. When fed to mice these compounds accumulated within the brain, heart, and liver; therefore, using these mitochondrial‐targeted antioxidants may help investigations of the role of mitochondrial oxidative damage in animal models of aging.


Biochemical Journal | 2005

Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor κB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants

Gillian Hughes; Michael P. Murphy; Elizabeth C. Ledgerwood

ROS (reactive oxygen species) from mitochondrial and non-mitochondrial sources have been implicated in TNFalpha (tumour necrosis factor alpha)-mediated signalling. In the present study, a new class of specific mitochondria-targeted antioxidants were used to explore directly the role of mitochondrial ROS in TNF-induced apoptosis. MitoVit E {[2-(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)ethyl]triphenylphosphonium bromide} (vitamin E attached to a lipophilic cation that facilitates accumulation of the antioxidant in the mitochondrial matrix) enhanced TNF-induced apoptosis of U937 cells. In time course analyses, cleavage and activation of caspase 8 in response to TNF were not affected by MitoVit E, whereas the activation of caspase 3 was significantly increased. Furthermore, there was an increased cleavage of the proapoptotic Bcl-2 family member Bid and an increased release of cytochrome c from mitochondria, in cells treated with TNF in the presence of MitoVit E. We considered several mechanisms by which MitoVit E might accelerate TNF-induced apoptosis including mitochondrial integrity (ATP/ADP levels and permeability transition), alterations in calcium homoeostasis and transcription factor activation. Of these, only the transcription factor NF-kappaB (nuclear factor kappaB) was implicated. TNF caused maximal nuclear translocation of NF-kappaB within 15 min, compared with 1 h in cells pretreated with MitoVit E. Thus the accumulation of an antioxidant within the mitochondrial matrix enhances TNF-induced apoptosis by decreasing or delaying the expression of the protective antiapoptotic proteins. These results demonstrate that mitochondrial ROS production is a physiologically relevant component of the TNF signal-transduction pathway during apoptosis, and reveal a novel functional role for mitochondrial ROS as a temporal regulator of NF-kappaB activation and NF-kappaB-dependent antiapoptotic signalling.


Free Radical Biology and Medicine | 2012

Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells.

Reagan M. Jarvis; Stephanie M. Hughes; Elizabeth C. Ledgerwood

Hydrogen peroxide is widely viewed as the main second messenger in redox signaling, and it has been proposed that deactivation of the antioxidant peroxiredoxin (Prdx) enzymes allows free peroxide to accumulate and directly oxidize target proteins (the floodgate model). We assessed the role of cytosolic Prdxs 1 and 2 in peroxide-induced activation of the apoptosis signaling kinase 1 (ASK1)/p38 signaling pathway, in which oxidation of ASK1 is required for phosphorylation of p38. In response to peroxide, Prdx1 catalyzed oxidation of ASK1 to a disulfide-linked multimer, and this occurred via transient formation of a Prdx1-ASK1 mixed disulfide intermediate. Oxidation of ASK1 and phosphorylation of p38 were inhibited by knockdown of Prdx1, but also by overexpression of Prdx2. This suggests that these two cytosolic Prdxs have distinct roles in the cellular peroxide response and compete for available peroxide substrate. These data imply that Prdx1 can function as a peroxide receptor in response to extracellular H(2)O(2), receiving the peroxide signal and transducing it into a disulfide bond that is subsequently transmitted to the substrate, ASK1, resulting in p38 phosphorylation. Interestingly, in response to peroxide, Prdx1 and Prdx3 transiently formed reducible higher molecular weight complexes, suggesting that multiple proteins are targets for Prdx-mediated oxidation via a disulfide-exchange mechanism. This model of active peroxide signal distribution via disulfide exchange is consistent with Prdx function in yeast and explains how peroxides may trigger specific disulfide bond formation in mammalian cells.


Biochimica et Biophysica Acta | 2010

Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: Implications for mitochondria-specific therapies and probes

Carolyn M. Porteous; Angela Logan; Cameron Evans; Elizabeth C. Ledgerwood; David K. Menon; Franklin I. Aigbirhio; Robin A. J. Smith; Michael P. Murphy

BACKGROUND Mitochondrial dysfunction contributes to a range of pathologies, consequently there is a need to monitor mitochondrial function and to intervene pharmacologically to prevent mitochondrial damage. One approach to this is to deliver antioxidants, probes and pharmacophores to mitochondria by conjugation to the lipophilic triphenylphosphonium (TPP) cation that is taken up selectively by mitochondria driven by the membrane potential. CONCLUSIONS Oral administration of TPP-conjugated antioxidants protects against mitochondrial damage in vivo. However, there is also a need to deliver molecules rapidly to mitochondria to respond quickly to pathologies and for the real-time assessment of mitochondrial function. METHODS To see if this was possible we investigated how rapidly TPP cations were taken up by mitochondria in vivo following intravenous (iv) administration. RESULTS AlkylTPP cations were accumulated selectively by mitochondria within mice within 5 min of iv injection. The extent of uptake was enhanced 10-30-fold relative to simple alkylTPP cations by attaching functional groups to the TPP cation via long, hydrophobic alkyl chains. Conclusions: Mitochondria-targeted antioxidants, probes and pharmacophores can be delivered into mitochondria within minutes of iv administration. GENERAL SIGNIFICANCE These findings greatly extend the utility of mitochondria-targeted lipophilic cations as therapies and probes.


Free Radical Biology and Medicine | 2008

Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis

Andrew G. Cox; Juliet M. Pullar; Gillian Hughes; Elizabeth C. Ledgerwood; Mark B. Hampton

It is hypothesized that activation of death receptors disrupts the redox homeostasis of cells and that this contributes to the induction of apoptosis. The redox status of the peroxiredoxins, which are extremely sensitive to increases in H2O2 and disruption of the thioredoxin system, were monitored in Jurkat T lymphoma cells undergoing Fas-mediated apoptosis. The only detectable change during the early stages of apoptosis was oxidation of mitochondrial peroxiredoxin 3. Increased H2O2 triggers peroxiredoxin overoxidation to a sulphinic acid; however during apoptosis peroxiredoxin 3 was captured as a disulfide, suggesting impairment of the thioredoxin system responsible for maintaining peroxiredoxin 3 in its reduced form. Peroxiredoxin 3 oxidation was an early event, occurring within the same timeframe as increased mitochondrial oxidant production, caspase activation and cytochrome c release. It preceded other major apoptotic events including mitochondrial permeability transition and phosphatidylserine exposure, and glutathione depletion, global thiol protein oxidation and protein carbonylation. Peroxiredoxin 3 oxidation was also observed in U937 cells stimulated with TNF-alpha. We hypothesize that the selective oxidation of peroxiredoxin 3 leads to an increase in mitochondrial H2O2 and that this may influence the progression of apoptosis.


Clinical Cancer Research | 2009

Targeting the Apoptosome for Cancer Therapy

Elizabeth C. Ledgerwood; Ian M. Morison

Apoptosis is a programmed mechanism of cell death that ensures normal development and tissue homeostasis in metazoans. Avoidance of apoptosis is an important contributor to the survival of tumor cells, and the ability to specifically trigger tumor cell apoptosis is a major goal in cancer treatment. In vertebrates, numerous stress signals engage the intrinsic apoptosis pathway to induce the release of cytochrome c from mitochondria. Cytochrome c binds to apoptosis protease activating factor-1, triggering formation of the apoptosome, a multisubunit protein complex that serves as a platform for caspase activation. In this review we summarize the mechanisms of apoptosome assembly and activation, and our current understanding of the regulation of these processes. We detail the evidence that loss-of-function of the apoptosome pathway may contribute to the development of specific cancers. Finally we discuss recent results showing enhanced sensitivity of some tumor cells to cytochrome c–induced apoptosis, suggesting that agents able to directly or indirectly trigger apoptosome-catalyzed caspase activation in tumor cells could provide new approaches to cancer treatment.


Journal of Virology | 2007

A Novel Bcl-2-Like Inhibitor of Apoptosis Is Encoded by the Parapoxvirus Orf Virus

Dana Westphal; Elizabeth C. Ledgerwood; Merilyn Hibma; Stephen B. Fleming; Ellena M. Whelan; Andrew A. Mercer

ABSTRACT Apoptotic cell death forms part of the host defense against virus infection. We tested orf virus, a member of the poxvirus family, for the ability to inhibit apoptosis and found that orf virus-infected cells were fully resistant to UV-induced changes in cell morphology, caspase activation, and DNA fragmentation. By using a library of vaccinia virus-orf virus recombinants, we identified an orf virus gene (ORFV125) whose presence was linked with the inhibition of apoptosis. The 173-amino-acid predicted protein had no clear homologs in public databases other than those encoded by other parapoxviruses. However, ORFV125 possessed a distinctive C-terminal domain which was necessary and sufficient to direct the protein to the mitochondria. We determined that ORFV125 alone could fully inhibit UV-induced DNA fragmentation, caspase activation, and cytochrome c release and that its mitochondrial localization was required for its antiapoptotic function. In contrast, ORFV125 did not prevent UV-induced activation of c-Jun NH2-terminal kinase, an event occurring upstream of the mitochondria. These features are comparable to the antiapoptotic properties of the mitochondrial regulator Bcl-2. Furthermore, bioinformatic analyses revealed sequence and secondary-structure similarities to Bcl-2 family members, including characteristic residues of all four Bcl-2 homology domains. Consistent with this, the viral protein inhibited the UV-induced activation of the proapoptotic Bcl-2 family members Bax and Bak. ORFV125 is the first parapoxvirus apoptosis inhibitor to be identified, and we propose that it is a new antiapoptotic member of the Bcl-2 family.

Collaboration


Dive into the Elizabeth C. Ledgerwood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Murphy

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge