Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth C. Mormino is active.

Publication


Featured researches published by Elizabeth C. Mormino.


Neurology | 2007

11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration

Gil D. Rabinovici; Ansgar J. Furst; James P. O'Neil; Caroline A. Racine; Elizabeth C. Mormino; Suzanne L. Baker; Sundari Chetty; P. Patel; T.A. Pagliaro; William E. Klunk; Chet Mathis; Howard J. Rosen; Bruce L. Miller; William J. Jagust

Background: The PET tracer 11C-labeled Pittsburgh Compound-B (11C-PIB) specifically binds fibrillar amyloid-beta (Aβ) plaques and can be detected in Alzheimer disease (AD). We hypothesized that PET imaging with 11C-PIB would discriminate AD from frontotemporal lobar degeneration (FTLD), a non-Aβ dementia. Methods: Patients meeting research criteria for AD (n = 7) or FTLD (n = 12) and cognitively normal controls (n = 8) underwent PET imaging with 11C-PIB (patients and controls) and 18F-fluorodeoxyglucose (18F-FDG) (patients only). 11C-PIB whole brain and region of interest (ROI) distribution volume ratios (DVR) were calculated using Logan graphical analysis with cerebellum as a reference region. DVR images were visually rated by a blinded investigator as positive or negative for cortical 11C-PIB, and summed 18F-FDG images were rated as consistent with AD or FTLD. Results: All patients with AD (7/7) had positive 11C-PIB scans by visual inspection, while 8/12 patients with FTLD and 7/8 controls had negative scans. Of the four PIB-positive patients with FTLD, two had 18F-FDG scans that suggested AD, and two had 18F-FDG scans suggestive of FTLD. Mean DVRs were higher in AD than in FTLD in whole brain, lateral frontal, precuneus, and lateral temporal cortex (p < 0.05), while DVRs in FTLD did not significantly differ from controls. Conclusions: PET imaging with 11C-labeled Pittsburgh Compound-B (11C-PIB) helps discriminate Alzheimer disease (AD) from frontotemporal lobar degeneration (FTLD). Pathologic correlation is needed to determine whether patients with PIB-positive FTLD represent false positives, comorbid FTLD/AD pathology, or AD pathology mimicking an FTLD clinical syndrome.


Annals of Neurology | 2016

Tau positron emission tomographic imaging in aging and early Alzheimer disease

Keith Johnson; Aaron P. Schultz; Rebecca A. Betensky; J. Alex Becker; Jorge Sepulcre; Dorene M. Rentz; Elizabeth C. Mormino; Jasmeer P. Chhatwal; Rebecca Amariglio; Kate V. Papp; Gad A. Marshall; Mark W. Albers; Samantha Mauro; Lesley Pepin; Jonathan Alverio; Kelly Judge; Marlie Philiossaint; Timothy M. Shoup; Daniel Yokell; Bradford C. Dickerson; Teresa Gomez-Isla; Bradley T. Hyman; Neil Vasdev; Reisa A. Sperling

Detection of focal brain tau deposition during life could greatly facilitate accurate diagnosis of Alzheimer disease (AD), staging and monitoring of disease progression, and development of disease‐modifying therapies.


Annals of Neurology | 2015

Tau PET imaging in aging and early Alzheimer's disease

Keith Johnson; Aaron P. Schultz; Rebecca A. Betensky; J. Alex Becker; Jorge Sepulcre; Dorene M. Rentz; Elizabeth C. Mormino; Jasmeer P. Chhatwal; Rebecca Amariglio; Kate V. Papp; Gad A. Marshall; Mark W. Albers; Samantha Mauro; Lesley Pepin; Jonathan Alverio; Kelly Judge; Marlie Philiossaint; Timothy M. Shoup; Daniel Yokell; Bradford C. Dickerson; Teresa Gomez-Isla; Bradley T. Hyman; Neil Vasdev; Reisa A. Sperling

Detection of focal brain tau deposition during life could greatly facilitate accurate diagnosis of Alzheimer disease (AD), staging and monitoring of disease progression, and development of disease‐modifying therapies.


Brain | 2010

Increased metabolic vulnerability in early-onset Alzheimer's disease is not related to amyloid burden

Gil D. Rabinovici; Ansgar J. Furst; Adi Alkalay; Caroline A. Racine; James P. O'Neil; Mustafa Janabi; Suzanne L. Baker; Neha Agarwal; Stephen J. Bonasera; Elizabeth C. Mormino; Michael W. Weiner; Maria Luisa Gorno-Tempini; Howard J. Rosen; Bruce L. Miller; William J. Jagust

Patients with early age-of-onset Alzheimers disease show more rapid progression, more generalized cognitive deficits and greater cortical atrophy and hypometabolism compared to late-onset patients at a similar disease stage. The biological mechanisms that underlie these differences are not well understood. The purpose of this study was to examine in vivo whether metabolic differences between early-onset and late-onset Alzheimers disease are associated with differences in the distribution and burden of fibrillar amyloid-beta. Patients meeting criteria for probable Alzheimers disease (National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimers; Disease and Related Disorders Association criteria) were divided based on estimated age at first symptom (less than or greater than 65 years) into early-onset (n = 21, mean age-at-onset 55.2 +/- 5.9 years) and late-onset (n = 18, 72.0 +/- 4.7 years) groups matched for disease duration and severity. Patients underwent positron emission tomography with the amyloid-beta-ligand [(11)C]-labelled Pittsburgh compound-B and the glucose analogue [(18)F]-labelled fluorodeoxyglucose. A group of cognitively normal controls (n = 30, mean age 73.7 +/- 6.4) was studied for comparison. [(11)C]-labelled Pittsburgh compound-B images were analysed using Logan graphical analysis (cerebellar reference) and [(18)F]-labelled fluorodeoxyglucose images were normalized to mean activity in the pons. Group differences in tracer uptake were assessed on a voxel-wise basis using statistical parametric mapping, and by comparing mean values in regions of interest. To account for brain atrophy, analyses were repeated after applying partial volume correction to positron emission tomography data. Compared to normal controls, both early-onset and late-onset Alzheimers disease patient groups showed increased [(11)C]-labelled Pittsburgh compound-B uptake throughout frontal, parietal and lateral temporal cortices and striatum on voxel-wise and region of interest comparisons (P < 0.05). However, there were no significant differences in regional or global [(11)C]-labelled Pittsburgh compound-B binding between early-onset and late-onset patients. In contrast, early-onset patients showed significantly lower glucose metabolism than late-onset patients in precuneus/posterior cingulate, lateral temporo-parietal and occipital corticies (voxel-wise and region of interest comparisons, P < 0.05). Similar results were found for [(11)C]-labelled Pittsburgh compound-B and [(18)F]-labelled fluorodeoxyglucose using atrophy-corrected data. Age-at-onset correlated positively with glucose metabolism in precuneus, lateral parietal and occipital regions of interest (controlling for age, education and Mini Mental State Exam, P < 0.05), while no correlations were found between age-at-onset and [(11)C]-labelled Pittsburgh compound-B binding. In summary, a comparable burden of fibrillar amyloid-beta was associated with greater posterior cortical hypometabolism in early-onset Alzheimers disease. Our data are consistent with a model in which both early amyloid-beta accumulation and increased vulnerability to amyloid-beta pathology play critical roles in the pathogenesis of Alzheimers disease in young patients.


Neurology | 2011

Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD.

Gil D. Rabinovici; Howard J. Rosen; Adi Alkalay; John Kornak; Ansgar J. Furst; Neha Agarwal; Elizabeth C. Mormino; James P. O'Neil; Mustafa Janabi; Anna Karydas; Matthew E. Growdon; Jung Y. Jang; Eric J. Huang; S.J. DeArmond; John Q. Trojanowski; Lea T. Grinberg; Maria Luisa Gorno-Tempini; William W. Seeley; Bruce L. Miller; William J. Jagust

Objective: To compare the diagnostic performance of PET with the amyloid ligand Pittsburgh compound B (PiB-PET) to fluorodeoxyglucose (FDG-PET) in discriminating between Alzheimer disease (AD) and frontotemporal lobar degeneration (FTLD). Methods: Patients meeting clinical criteria for AD (n = 62) and FTLD (n = 45) underwent PiB and FDG-PET. PiB scans were classified as positive or negative by 2 visual raters blinded to clinical diagnosis, and using a quantitative threshold derived from controls (n = 25). FDG scans were visually rated as consistent with AD or FTLD, and quantitatively classified based on the region of lowest metabolism relative to controls. Results: PiB visual reads had a higher sensitivity for AD (89.5% average between raters) than FDG visual reads (77.5%) with similar specificity (PiB 83%, FDG 84%). When scans were classified quantitatively, PiB had higher sensitivity (89% vs 73%) while FDG had higher specificity (83% vs 98%). On receiver operating characteristic analysis, areas under the curve for PiB (0.888) and FDG (0.910) were similar. Interrater agreement was higher for PiB (κ = 0.96) than FDG (κ = 0.72), as was agreement between visual and quantitative classification (PiB κ = 0.88–0.92; FDG κ = 0.64–0.68). In patients with known histopathology, overall classification accuracy (2 visual and 1 quantitative classification per patient) was 97% for PiB (n = 12 patients) and 87% for FDG (n = 10). Conclusions: PiB and FDG showed similar accuracy in discriminating AD and FTLD. PiB was more sensitive when interpreted qualitatively or quantitatively. FDG was more specific, but only when scans were classified quantitatively. PiB slightly outperformed FDG in patients with known histopathology.


Cerebral Cortex | 2011

Relationships between Beta-Amyloid and Functional Connectivity in Different Components of the Default Mode Network in Aging

Elizabeth C. Mormino; Andre Smiljic; Amynta O. Hayenga; Susan H. Onami; Michael D. Greicius; Gil D. Rabinovici; Mustafa Janabi; Suzanne L. Baker; Irene V. Yen; Cindee Madison; Bruce L. Miller; William J. Jagust

Although beta-amyloid (Aβ) deposition is a characteristic feature of Alzheimers disease (AD), this pathology is commonly found in elderly normal controls (NC). The pattern of Aβ deposition as detected with Pittsburgh compound-B positron emission tomography (PIB-PET) imaging shows substantial spatial overlap with the default mode network (DMN), a group of brain regions that typically deactivates during externally driven cognitive tasks. In this study, we show that DMN functional connectivity (FC) during rest is altered with increasing levels of PIB uptake in NC. Specifically, FC decreases were identified in regions implicated in episodic memory (EM) processing (posteromedial cortex, ventral medial prefrontal cortex, and angular gyrus), whereas connectivity increases were detected in dorsal and anterior medial prefrontal and lateral temporal cortices. This pattern of decreases is consistent with previous studies that suggest heightened vulnerability of EM-related brain regions in AD, whereas the observed increases in FC may reflect a compensatory response.


JAMA Neurology | 2014

Synergistic effect of β-amyloid and neurodegeneration on cognitive decline in clinically normal individuals.

Elizabeth C. Mormino; Rebecca A. Betensky; Trey Hedden; Aaron P. Schultz; Rebecca Amariglio; Dorene M. Rentz; Keith Johnson; Reisa A. Sperling

IMPORTANCE Assessing the ability of Alzheimer disease neuroimaging markers to predict short-term cognitive decline among clinically normal (CN) individuals is critical for upcoming secondary prevention trials using cognitive outcomes. OBJECTIVE To determine whether neuroimaging markers of β-amyloid (Aβ) and neurodegeneration (ND) are independently or synergistically associated with longitudinal cognitive decline in CN individuals. DESIGN, SETTING, AND PARTICIPANTS Academic medical center longitudinal natural history study among 166 CN individuals (median age, 74 years; 92 women). MAIN OUTCOMES AND MEASURES The Aβ status was determined with Pittsburgh Compound B-positron emission tomography, while ND was assessed using 2 a priori measures, hippocampus volume (magnetic resonance imaging) and glucose metabolism (positron emission tomography with fludeoxyglucose F 18), extracted from Alzheimer disease-vulnerable regions. Based on imaging markers, CN individuals were categorized into the following preclinical Alzheimer disease stages: stage 0 (Aβ-/ND-), stage 1 (Aβ(+)/ND-), stage 2 (Aβ(+)/ND(+)), and suspected non-Alzheimer disease pathology (Aβ-/ND(+)). Cognition was assessed with a composite of neuropsychological tests administered annually. RESULTS The Aβ(+) CN individuals were more likely to be classified as ND+: 59.6% of Aβ(+) CN individuals were ND(+), whereas 31.9% of Aβ- CN individuals were ND(+) (odds ratio, 3.14; 95% CI, 1.44-7.02; P = .004). In assessing longitudinal cognitive performance, practice effects were evident in CN individuals negative for both Aβ and ND, whereas diminished practice effects were observed in CN individuals positive for either Aβ or ND. Decline over time was observed only in CN individuals positive for both Aβ and ND, and decline in this group was significantly greater than that in all other groups (P < .001 for all). A significant interaction term between Aβ and ND confirmed that this decline was greater than the additive contributions of Aβ and ND (P = .04). CONCLUSIONS AND RELEVANCE The co-occurrence of Aβ and ND accelerates cognitive decline in CN individuals. Therefore, both factors are important to consider in upcoming secondary prevention trials targeting CN individuals at high risk for progression to the symptomatic stages of Alzheimer disease.


Neurology | 2014

Amyloid and APOE ε4 interact to influence short-term decline in preclinical Alzheimer disease

Elizabeth C. Mormino; Rebecca A. Betensky; Trey Hedden; Aaron P. Schultz; Andrew Ward; Willem Huijbers; Dorene M. Rentz; Keith Johnson; Reisa A. Sperling

Objective: To examine whether β-amyloid (Aβ) and APOE ε4 status independently contribute or interact to influence longitudinal cognitive decline in clinically normal older individuals (CN). Methods: Data from 490 CNs were aggregated across 3 observational cohort studies (Harvard Aging Brain Study, Alzheimers Disease Neuroimaging Initiative, and Australian Imaging Biomarkers and Lifestyle Study of Ageing; median age = 75.0 years, 255 female), and the contributions of APOE ε4 and Aβ on longitudinal change over a median of 1.49 years were examined. Cognitive decline was assessed with the Mini-Mental State Examination (MMSE) and Logical Memory (immediate and delayed recall scores). Results: High Aβ participants were more likely to be APOE ε4+ than low Aβ participants. CNs who were both high Aβ and APOE ε4+ showed greater decline in Logical Memory immediate recall (p < 0.087), Logical Memory delayed recall (p < 0.024), and MMSE (p < 0.034) compared to all other groups (low Aβ/APOE ε4−, low Aβ/APOE ε4+, and high Aβ/APOE ε4−). No other pairwise contrast was significant for any cognitive measure. Conclusions: Clinically normal individuals who are APOE ε4+ and have high Aβ showed the highest cognitive decline. These results suggest that Aβ and APOE ε4 are not redundant contributors of decline in aging but rather interact to promote decline during the short follow-up period examined in this study. Longer follow-up periods will be essential to fully elucidate the influence of Alzheimer disease risk factors on cognitive decline in aging.


JAMA Neurology | 2012

Subjective Cognition and Amyloid Deposition Imaging: A Pittsburgh Compound B Positron Emission Tomography Study in Normal Elderly Individuals

Audrey Perrotin; Elizabeth C. Mormino; Cindee Madison; Amynta O. Hayenga; William J. Jagust

OBJECTIVE To study the relationship between subjective cognition and the neuropathological hallmark of Alzheimer disease (AD), amyloid-β (Aβ) deposition, using carbon 11-labeled Pittsburgh Compound B (PiB) positron emission tomography in normal elderly individuals. DESIGN Cross-sectional analysis. SUBJECTS Forty-eight cognitively normal elderly subjects (11 with high PiB uptake and 28 with low PiB uptake) were included. All underwent clinical and neuropsychological evaluations, magnetic resonance imaging, and positron emission tomography. SETTING Berkeley Aging Cohort Study. MAIN OUTCOME MEASURE Relationship between PiB uptake and subjective cognition measures. RESULTS Subjects with high PiB uptake showed significantly lower performance than those with low PiB uptake on an episodic memory measure and were less confident about their general memory abilities when required to evaluate themselves relative to other people of the same age. High and low PiB uptake groups did not differ on the accuracy of their cognitive self-reports compared with objective cognitive performance. General memory self-reports from the whole group were significantly correlated with regional PiB uptake in the right medial prefrontal cortex and anterior cingulate cortex and in the right precuneus and posterior cingulate cortex. Reduced confidence about memory abilities was associated with greater PiB uptake in these brain regions. All results were independent of demographic variables and depressive affects. CONCLUSIONS A decrease of self-confidence about memory abilities in cognitively normal elderly subjects may be related to the neuropathological hallmark of AD measured with PiB-positron emission tomography. Subjective cognitive impairment may represent a very early clinical manifestation of AD.


The Journal of Neuroscience | 2012

Cognitive Profile of Amyloid Burden and White Matter Hyperintensities in Cognitively Normal Older Adults

Trey Hedden; Elizabeth C. Mormino; Rebecca Amariglio; Alayna P. Younger; Aaron P. Schultz; John A. Becker; Randy L. Buckner; Keith Johnson; Reisa A. Sperling; Dorene M. Rentz

Amyloid burden and white matter hyperintensities (WMH) are two common markers of neurodegeneration present in advanced aging. Each represents a potential early indicator of an age-related neurological disorder that impacts cognition. The presence of amyloid is observed in a substantial subset of cognitively normal older adults, but the literature remains equivocal regarding whether amyloid in nondemented populations is deleterious to cognition. Similarly, WMH are detected in many nondemented older adults and there is a body of evidence indicating that WMH are associated with decreased executive function and other cognitive domains. The current study investigated amyloid burden and WMH in clinically normal older adult humans aged 65–86 (N = 168) and examined each biomarkers relation with cognitive domains of episodic memory, executive function, and speed of processing. Factors for each domain were derived from a neuropsychological battery on a theoretical basis without reference to the relation between cognition and the biomarkers. Amyloid burden and WMH were not correlated with one another. Age was associated with lower performance in all cognitive domains, while higher estimated verbal intelligence was associated with higher performance in all domains. Hypothesis-driven tests revealed that amyloid burden and WMH had distinct cognitive profiles, with amyloid burden having a specific influence on episodic memory and WMH primarily associated with executive function but having broad (but lesser) effects on the other domains. These findings suggest that even before clinical impairment, amyloid burden and WMH likely represent neuropathological cascades with distinct etiologies and dissociable influences on cognition.

Collaboration


Dive into the Elizabeth C. Mormino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathryn V. Papp

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge