Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Cottrell is active.

Publication


Featured researches published by Elizabeth Cottrell.


Science | 2009

Water and the Oxidation State of Subduction Zone Magmas

Katherine A. Kelley; Elizabeth Cottrell

Tracing Mantle Oxidation The chemical composition of the Earths mantle varies with tectonic setting. For example, basaltic melts near subduction zones are more oxidized than magma near divergent plate boundaries. Kelley and Cottrell (p. 605; see the Perspective by Hirschmann) examined melts formed in different tectonic environments, using highly sensitive synchrotron-based analytical methods. The oxidation state of Fe increased with water content and mobile trace elements concentrations. Thus, fluids released from wet subducting plates drive mantle oxidation above subduction zones, which may help to explain the spatial differences in oxygen fugacity of the mantle. Oxidation of Earth’s mantle at subduction zones is caused by fluids released from the melting of subducting plates. Mantle oxygen fugacity exerts a primary control on mass exchange between Earth’s surface and interior at subduction zones, but the major factors controlling mantle oxygen fugacity (such as volatiles and phase assemblages) and how tectonic cycles drive its secular evolution are still debated. We present integrated measurements of redox-sensitive ratios of oxidized iron to total iron (Fe3+/ΣFe), determined with Fe K-edge micro–x-ray absorption near-edge structure spectroscopy, and pre-eruptive magmatic H2O contents of a global sampling of primitive undegassed basaltic glasses and melt inclusions covering a range of plate tectonic settings. Magmatic Fe3+/ΣFe ratios increase toward subduction zones (at ridges, 0.13 to 0.17; at back arcs, 0.15 to 0.19; and at arcs, 0.18 to 0.32) and correlate linearly with H2O content and element tracers of slab-derived fluids. These observations indicate a direct link between mass transfer from the subducted plate and oxidation of the mantle wedge.


Journal of Applied Volcanology | 2012

Global database on large magnitude explosive volcanic eruptions (LaMEVE)

Helen Sian Crosweller; Baneet Arora; Sarah K. Brown; Elizabeth Cottrell; Natalia Irma Deligne; Natalie Ortiz Guerrero; Laura Hobbs; Koji Kiyosugi; Susan C. Loughlin; Jonathan Lowndes; Martin Nayembil; Lee Siebert; R. S. J. Sparks; Shinji Takarada; Edward Venzke

To facilitate the assessment of hazards and risk from volcanoes, we have created a comprehensive global database of Quaternary Large Magnitude Explosive Volcanic Eruptions (LaMEVE). This forms part of the larger Volcanic Global Risk Identification and Analysis Project (VOGRIPA), and also forms part of the Global Volcano Model (GVM) initiative (http://www.globalvolcanomodel.org). A flexible search tool allows users to select data on a global, regional or local scale; the selected data can be downloaded into a spreadsheet. The database is publically available online at http://www.bgs.ac.uk/vogripa and currently contains information on nearly 3,000 volcanoes and over 1,800 Quaternary eruption records. Not all volcanoes currently have eruptions associated with them but have been included to allow for easy expansion of the database as more data are found. Data fields include: magnitude, Volcanic Explosivity Index (VEI), deposit volumes, eruption dates, and rock type. The scientific community is invited to contribute new data and also alert the database manager to potentially incorrect data. Whilst the database currently focuses only on large magnitude eruptions, it will be expanded to include data specifically relating to the principal volcanic hazards (e.g. pyroclastic flows, tephra fall, lahars, debris avalanches, ballistics), as well as vulnerability (e.g. population figures, building type) to facilitate risk assessments of future eruptions.


Journal of Applied Volcanology | 2014

Characterisation of the Quaternary eruption record: analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database

Sarah K. Brown; Helen Sian Crosweller; R. S. J. Sparks; Elizabeth Cottrell; Natalia Irma Deligne; Natalie Ortiz Guerrero; Laura Hobbs; Koji Kiyosugi; Susan C. Loughlin; Lee Siebert; Shinji Takarada

The Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database contains data on 1,883 Quaternary eruption records of magnitude (M) 4 and above and is publically accessible online via the British Geological Survey. Spatial and temporal analysis of the data indicates that the record is incomplete and is thus biased. The recorded distribution of volcanoes is variable on a global scale, with three-quarters of all volcanoes with M≥4 Quaternary activity located in the northern hemisphere and a quarter within Japan alone. The distribution of recorded eruptions does not strictly follow the spatial distribution of volcanoes and has distinct intra-regional variability, with about 40% of all recorded eruptions having occurred in Japan, reflecting in part the country’s efforts devoted to comprehensive volcanic studies. The number of eruptions in LaMEVE decreases with increasing age, exemplified by the recording of 50% of all known Quaternary eruptions during the last 20,000 years. Historical dating is prevalent from 1450 AD to the present day, substantially improving record completeness. The completeness of the record also improves as magnitude increases. This is demonstrated by the calculation of the median time, T50, for eruptions within given magnitude intervals, where 50% of eruptions are older than T50: T50 ranges from 5,070 years for M4-4.9 eruptions to 935,000 years for M≥8 eruptions. T50 follows a power law fit, suggesting a quantifiable relationship between eruption size and preservation potential of eruptive products. Several geographic regions have T50 ages of <250 years for the smallest (~M4) eruptions reflecting substantial levels of under-recording. There is evidence for latitudinal variation in eruptive activity, possibly due to the effects of glaciation. A peak in recorded activity is identified at 11 to 9 ka in high-latitude glaciated regions. This is absent in non-glaciated regions, supporting the hypothesis of increased volcanism due to ice unloading around this time. Record completeness and consequent interpretation of record limitations are important in understanding volcanism on global to local scales and must be considered during rigorous volcanic hazard and risk assessments. The study also indicates that there need to be improvements in the quality of data, including assessment of uncertainties in volume estimates.


Science | 2013

Redox Heterogeneity in Mid-Ocean Ridge Basalts as a Function of Mantle Source

Elizabeth Cottrell; Katherine A. Kelley

Redox Recycling Plate tectonics drive the continuous exchange of material between Earths crust and mantle. Subduction adds crustal materials to the mantle, which influence the composition of erupted lavas at mid-ocean ridges. Because chemical and physical processes in the mantle change over time as a response to the availability of oxygen, the redox state of mid-ocean ridge basalts may trace the history of recycling between crust and mantle. Cottrell and Kelley (p. 1314, published online 2 May) analyzed the relation between the oxidation state of iron in a global suite of mid-ocean ridge basalts and tracers for mantle source composition. Over tectonic time scales, the recycling of reduced carbon in ancient crustal sediments may result in the preservation of more reduced zones in the mantle. Subducted carbon from ancient oceanic crust results in a more reduced mantle. The oxidation state of Earth’s upper mantle both influences and records mantle evolution, but systematic fine-scale variations in upper mantle oxidation state have not previously been recognized in mantle-derived lavas from mid-ocean ridges. Through a global survey of mid-ocean ridge basalt glasses, we show that mantle oxidation state varies systematically as a function of mantle source composition. Negative correlations between Fe3+/ΣFe ratios and indices of mantle enrichment—such as 87Sr/86Sr, 208Pb/204Pb, Ba/La, and Nb/Zr ratios—reveal that enriched mantle is more reduced than depleted mantle. Because carbon may act to simultaneously reduce iron and generate melts that share geochemical traits with our reduced samples, we propose that carbon creates magmas at ridges that are reduced and enriched.


Journal of Fluid Mechanics | 2007

Instability of a chemically dense layer heated from below and overlain by a deep less viscous fluid

Claude Jaupart; Peter Molnar; Elizabeth Cottrell

Near the threshold of stability, an intrinsically denser fluid heated from below and underlying an isothermal fluid can undergo oscillatory instability, whereby perturbations to the interface between the fluids rise and fall periodically, or it can be mechanically stable and in thermal equilibrium with heat flux extracted by small-scale convection at the interface. Both the analysis of marginal stability and laboratory experiments in large-Prandtl-number fluids show that the critical Rayleigh number, scaled to parameters of the lower fluid, depends strongly on the buoyancy number, B, the ratio of the intrinsic density difference between the fluids and the maximum density difference due to thermal expansion. For small buoyancy number, B xs223C 0.5 and RaC > xs223C1100, a second form of instability develops, in which convection is confined to the lower layer. The analysis of marginal stability for layers with very different viscosities shows further that two modes of oscillatory instability exist, depending on the value of B. For B 0.275, only the bottom of the lower layer is buoyant, and instability occurs by its penetrating the upper part of the lower layer; the wavelengths of the perturbations that grow fastest are much smaller than those for B < 0.275, and the maximum frequency of oscillatory instability is much larger than that for B < 0.275. Oscillations in the laboratory experiments show that the heights to which plumes of the lower fluid rise into the upper one increase with the Rayleigh number. Moreover, in the finite-amplitude regime, the oscillation is not symmetrical. Plumes that reach maximum heights fall quickly, folding on themselves and entraining some of the upper fluid. Hence oscillatory convection provides a mechanism for mixing the fluids. Applied to the Earth, these results bear on the development of continental lithosphere, whose mantle part is chemically different from the underlying asthenosphere. As shown by the laboratory experiments and stability analysis, the lithosphere can be mechanically stable and in thermal equilibrium such that heat supplied by small-scale convection at the top of the asthenosphere is conducted through it. The lithosphere seems to have developed in a state near that of instability with different thicknesses depending on its intrinsic buoyancy. It may have grown not only by chemical differentiation during melting, but also by oscillatory convection entraining chemically denser material from the asthenosphere.


Journal of Geophysical Research | 2015

The effect of primary versus secondary processes on the volatile content of MORB glasses: An example from the equatorial Mid-Atlantic Ridge (5°N-3°S)

Marion Le Voyer; Elizabeth Cottrell; Katherine A. Kelley; Maryjo Brounce; Erik H. Hauri

We report microanalysis of volatile and trace element compositions, as well as Fe3+/ΣFe ratios, from 45 basaltic glasses from cruise RC2806 along the equatorial Mid-Atlantic Ridge. The along-strike variations in volatiles result from the complex geodynamical setting of the area, including numerous transform faults, variations in ridge depth, melting degree, and source composition. The strongest gradient is centered on 1.7°N and encompasses an increase of H2O, Cl, and F contents as well as high F/Zr ratio spatially coincident with radiogenic isotope anomalies. We interpret these variations as source enrichment due to the influence of the nearby high-μ-type Sierra Leone plume. South of the St. Paul fracture zone, H2O and F contents, as well as H2O/Ce and F/Zr ratios, decrease progressively. This gradient in volatiles is consistent with progressive dilution of an enriched component in a heterogeneous mantle due to the progressive increase in the degree of melting. These two large-scale gradients are interrupted by small-scale anomalies in volatile contents attributed to (1) low-degree melts preferentially sampling enriched heterogeneities near transform faults and (2) local assimilation of hydrothermal fluids in four samples from dredge 16D. Finally, 20 RC2806 samples described as “popping rocks” during collection do not show any difference in volatile content dissolved in the glass or in vesicularity when compared to the RC2806 “nonpopping” samples. Our observations lead us to question the interpretation of the CO2 content in the highly vesicular 2πD43 “popping rock” as being representative of the CO2 content of undegassed mid-ocean ridge basalt.


Geology | 2015

Temporal evolution of mantle wedge oxygen fugacity during subduction initiation

Maryjo Brounce; Katherine A. Kelley; Elizabeth Cottrell; Mark K. Reagan

Arc basalts have a higher proportion of Fe in an oxidized state (Fe^(3+)) relative to Fe^(2+) compared to mid-oceanic ridge basalts (MORBs), likely because slab-derived fluids oxidize the mantle wedge where subduction zone magmas originate. Yet, the time scales over which oxygen fugacity of the mantle wedge changes during subduction initiation and margin evolution are unknown. Fe speciation ratios show that magmas produced during the early stages of subduction in the Mariana arc record oxygen fugacities ∼2× more oxidized than MORB. Mantle wedge oxygen fugacity rises by ∼1.3 orders of magnitude as slab fluids become more involved in melt generation processes, reaching conditions essentially equivalent to the modern arc in just 2–4 m.y. These results constrain existing models for the geochemical evolution of the mantle wedge and suggest that oxidation commences upon subduction initiation and matures rapidly in the portions of the mantle wedge that produce melts. This further implies that sulfide or other reduced phases are not present in the mantle wedge in high enough abundance to prevent oxidation of the magmas that form upon subduction initiation. The arc mantle source is oxidized for the majority of a subduction zone’s lifetime, influencing the mobility of multivalent elements during recycling, the degassing of oxidized volcanic volatiles, and the mechanisms for generating continental crust from the immediate onset of subduction.


Cambridge University Press | 2015

Global volcanic hazards and risk

Sarah K. Brown; Susan C. Loughlin; R.S.J. Sparks; Charlotte Vye-Brown; Jenni Barclay; E. S. Calder; Elizabeth Cottrell; G. Jolly; J-C. Komorowski; C. Mandeville; C.G. Newhall; J.L. Palma; S. Potter; G. Valentine

1. An introduction to global volcanic hazard and risk S. C. Loughlin, C. Vye-Brown, R. S. J. Sparks, S. K. Brown, J. Barclay, E. Calder, E. Cottrell, G. Jolly, J.-C. Komorowski, C. Mandeville, C. Newhall, J. Palma, S. Potter, G. Valentine, B. Baptie, J. Biggs, H. S. Crosweller, E. Ilyinskaya, C. Kilburn, K. Mee and M. Pritchard 2. Global volcanic hazard and risk S. K. Brown, S. C. Loughlin, R. S. J. Sparks, C. Vye-Brown, J. Barclay, E. Calder, E. Cottrell, G. Jolly, J.-C. Komorowski, C. Mandeville, C. Newhall, J. Palma, S. Potter, G. Valentine, B. Baptie, J. Biggs, H. S. Crosweller, E. Ilyinskaya, C. Kilburn, K. Mee and M. Pritchard 3. Volcanic ash fall hazard and risk S. F. Jenkins, T. M. Wilson, C. Magill, V. Miller, C. Stewart, R. Blong, W. Marzocchi, M. Boulton, C. Bonadonna and A. Costa 4. Populations around Holocene volcanoes and development of a Population Exposure Index S. K. Brown, M. R. Auker and R. S. J. Sparks 5. An integrated approach to Determining Volcanic Risk in Auckland, New Zealand: the multidisciplinary DEVORA project N. I. Deligne, J. M. Lindsay and E. Smid 6. Tephra fall hazard for the Neapolitan area W. Marzocchi, J. Selva, A. Costa, L. Sandri, R. Tonini and G. Macedonio 7. Eruptions and lahars of Mount Pinatubo, 1991-2000 C. G. Newhall and R. Solidum 8. Improving crisis decision-making at times of uncertain volcanic unrest (Guadeloupe, 1976) J.-C. Komorowski, T. Hincks, R. S. J. Sparks, W. Aspinall and CASAVA ANR project consortium 9. Forecasting the November 2010 eruption of Merapi, Indonesia J. Pallister and Surono 10. The importance of communication in hazard zone areas: case study during and after 2010 Merapi eruption, Indonesia S. Andreastuti, J. Subandriyo, S. Sumarti and D. Sayudi 11. Nyiragongo (Democratic Republic of Congo), January 2002: a major eruption in the midst of a complex humanitarian emergency J.-C. Komorowski and K. Karume 12. Volcanic ash fall impacts T. M. Wilson, S. F. Jenkins and C. Stewart 13. Health impacts of volcanic eruptions C. Horwell, P. Baxter and R. Kamanyire 14. Volcanoes and the aviation industry P. W. Webley 15. The role of volcano observatories in risk reduction G. Jolly 16. Developing effective communication tools for volcanic hazards in New Zealand, using social science G. Leonard and S. Potter 17. Volcano monitoring from space M. Poland 18. Volcanic unrest and short-term forecasting capacity J. Gottsmann 19. Global monitoring capacity: development of the Global Volcano Research and Monitoring Institutions Database and analysis of monitoring in Latin America N. Ortiz Guerrero, S. K. Brown, H. Delgado Granados and C. Lombana Criollo 20. Volcanic hazard maps E. Calder, K. Wagner and S. E. Ogburn 21. Risk assessment case history: the Soufriere Hills Volcano, Montserrat W. Aspinall and G. Wadge 22. Development of a new global Volcanic Hazard Index (VHI) M. R. Auker, R. S. J. Sparks, S. F. Jenkins, S. K. Brown, W. Aspinall, N. I. Deligne, G. Jolly, S. C. Loughlin, W. Marzocchi, C. G. Newhall and J. L. Palma 23. Global distribution of volcanic threat S. K. Brown, R. S. J. Sparks and S. F. Jenkins 24. Scientific communication of uncertainty during volcanic emergencies J. Marti 25. Volcano Disaster Assistance Program: preventing volcanic crises from becoming disasters and advancing science diplomacy J. Pallister 26. Communities coping with uncertainty and reducing their risk: the collaborative monitoring and management of volcanic activity with the Vigias of Tungurahua J. Stone, J. Barclay, P. Ramon, P. Mothes and STREVA.


Nature Communications | 2017

Heterogeneity in mantle carbon content from CO 2 -undersaturated basalts

M. Le Voyer; Katherine A. Kelley; Elizabeth Cottrell; Erik H. Hauri

The amount of carbon present in Earths mantle affects the dynamics of melting, volcanic eruption style and the evolution of Earths atmosphere via planetary outgassing. Mantle carbon concentrations are difficult to quantify because most magmas are strongly degassed upon eruption. Here we report undegassed carbon concentrations from a new set of olivine-hosted melt inclusions from the Mid-Atlantic Ridge. We use the correlations of CO2 with trace elements to define an average carbon abundance for the upper mantle. Our results indicate that the upper mantle carbon content is highly heterogeneous, varying by almost two orders of magnitude globally, with the potential to produce large geographic variations in melt fraction below the volatile-free solidus. Such heterogeneity will manifest as variations in the depths at which melt becomes interconnected and detectable, the CO2 fluxes at mid-ocean ridges, the depth of the lithosphere-asthenosphere boundary, and mantle conductivity.


Geophysical Research Letters | 2004

Marginal stability of thick continental lithosphere

Elizabeth Cottrell; Claude Jaupart; Peter Molnar

[1] Laboratory and numerical experiments show that when a chemically different layer overlies a hotter but otherwise denser layer, analogous to continental mantle lithosphere over asthenosphere, convective stability depends strongly on both the critical Rayleigh number and the buoyancy number, B, of the lithosphere-like layer. Sufficient cooling at low buoyancy number results in an oscillatory convective instability whereby the colder, more viscous, but chemically lighter layer is drawn into zones of downwelling flow adjacent to laterally extensive zones of upwelling. The critical Rayleigh number for instability increases with the buoyancy number from as little as 30 for B =0t o1000 for B 0.5. Applied to continental lithosphere in a thermal and mechanical state near the instability threshold, this relationship implies that the lithospheric thickness must decrease as the mean density of the lithospheric mantle increases, consistent with the geological record. INDEX TERMS: 1010 Geochemistry: Chemical evolution; 8110 Tectonophysics: Continental tectonics—general (0905); 8120 Tectonophysics: Dynamics of lithosphere and mantle—general; 9699 Information Related to Geologic Time: General or miscellaneous. Citation: Cottrell, E., C. Jaupart, and P. Molnar (2004), Marginal stability of thick continental lithosphere, Geophys. Res. Lett., 31, L18612, doi:10.1029/2004GL020332.

Collaboration


Dive into the Elizabeth Cottrell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maryjo Brounce

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

You Qing Fei

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee Siebert

Smithsonian Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge