Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth de Pinna is active.

Publication


Featured researches published by Elizabeth de Pinna.


Nature Genetics | 2012

Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa

Chinyere K. Okoro; Robert A. Kingsley; Thomas Richard Connor; Simon R. Harris; Christopher M. Parry; Manar Najim Al-Mashhadani; Samuel Kariuki; Chisomo L. Msefula; Melita A. Gordon; Elizabeth de Pinna; John Wain; Robert S. Heyderman; Stephen Obaro; Pedro L. Alonso; Inacio Mandomando; Calman A. MacLennan; Milagritos D. Tapia; Myron M. Levine; Sharon M. Tennant; Julian Parkhill; Gordon Dougan

A highly invasive form of non-typhoidal Salmonella (iNTS) disease has recently been documented in many countries in sub-Saharan Africa. The most common Salmonella enterica serovar causing this disease is Typhimurium (Salmonella Typhimurium). We applied whole-genome sequence–based phylogenetic methods to define the population structure of sub-Saharan African invasive Salmonella Typhimurium isolates and compared these to global Salmonella Typhimurium populations. Notably, the vast majority of sub-Saharan invasive Salmonella Typhimurium isolates fell within two closely related, highly clustered phylogenetic lineages that we estimate emerged independently ∼52 and ∼35 years ago in close temporal association with the current HIV pandemic. Clonal replacement of isolates from lineage I by those from lineage II was potentially influenced by the use of chloramphenicol for the treatment of iNTS disease. Our analysis suggests that iNTS disease is in part an epidemic in sub-Saharan Africa caused by highly related Salmonella Typhimurium lineages that may have occupied new niches associated with a compromised human population and antibiotic treatment.


Nature Genetics | 2015

Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events

Vanessa K. Wong; Stephen Baker; Derek Pickard; Julian Parkhill; Andrew J. Page; Nicholas A. Feasey; Robert A. Kingsley; Nicholas R. Thomson; Jacqueline A. Keane; F X Weill; David J. Edwards; Jane Hawkey; Simon R. Harris; Alison E. Mather; Amy K. Cain; James Hadfield; Peter J. Hart; Nga Tran Vu Thieu; Elizabeth J. Klemm; Dafni A. Glinos; Robert F. Breiman; Conall H. Watson; Samuel Kariuki; Melita A. Gordon; Robert S. Heyderman; Chinyere K. Okoro; Jan Jacobs; Octavie Lunguya; W. John Edmunds; Chisomo L. Msefula

The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.


Journal of Antimicrobial Chemotherapy | 2016

Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales

Michel Doumith; Gauri Godbole; Philip M. Ashton; Lesley Larkin; Tim Dallman; Martin Day; Michaela Day; Berit Muller-Pebody; Matthew J. Ellington; Elizabeth de Pinna; Alan P. Johnson; Katie L. Hopkins; Neil Woodford

OBJECTIVES In response to the first report of transmissible colistin resistance mediated by the mcr-1 gene in Escherichia coli and Klebsiella spp. from animals and humans in China, we sought to determine its presence in Enterobacteriaceae isolated in the UK. METHODS The PHE archive of whole-genome sequences of isolates from surveillance collections, submissions to reference services and research projects was retrospectively analysed for the presence of mcr-1 using Genefinder. The genetic environment of the gene was also analysed. RESULTS Rapid screening of the genomes of ∼24 000 Salmonella enterica, E. coli, Klebsiella spp., Enterobacter spp., Campylobacter spp. and Shigella spp. isolated from food or humans identified 15 mcr-1-positive isolates. These comprised: 10 human S. enterica isolates submitted between 2012 and 2015 (8 Salmonella Typhimurium, 1 Salmonella Paratyphi B var Java and 1 Salmonella Virchow) from 10 patients; 3 isolates of E. coli from 2 patients; and 2 isolates of Salmonella Paratyphi B var Java from poultry meat imported from the EU. The mcr-1 gene was located on diverse plasmids belonging to the IncHI2, IncI2 and IncX4 replicon types and its association with ISApl1 varied. Six mcr-1-positive S. enterica isolates were from patients who had recently travelled to Asia. CONCLUSIONS Analysis of WGS data allowed rapid confirmation of the presence of the plasmid-mediated colistin resistance gene mcr-1 in diverse genetic environments and plasmids. It has been present in E. coli and Salmonella spp. harboured by humans in England and Wales since at least 2012.


Foodborne Pathogens and Disease | 2008

Packed with Salmonella--investigation of an international outbreak of Salmonella Senftenberg infection linked to contamination of prepacked basil in 2007.

Lorenzo Pezzoli; Richard Elson; Christine L. Little; Hopi Yip; I. S.T. Fisher; Ruth Yishai; Emilia Anis; Lea Valinsky; Matthew Biggerstaff; Nehal Patel; H A Mather; Derek J. Brown; John E. Coia; Wilfrid van Pelt; Eva Møller Nielsen; Steen Ethelberg; Elizabeth de Pinna; Michael D. Hampton; Tansy Peters; John Threlfall

Salmonella Senftenberg is uncommon in the United Kingdom. In January-June 2007, the Health Protection Agency reported on 55 primary human cases of Salmonella Senftenberg in England and Wales. In May 2007, fresh basil sold in the United Kingdom was found to be contaminated with Salmonella Senftenberg. We launched an investigation to elucidate the cause of this outbreak. Isolates were examined using plasmid profiling and pulsed-field gel electrophoresis, and the outbreak strain (SSFTXB.0014) was identified. We enquired via Enter-net whether other countries had isolated the outbreak strain, analyzed samples of fresh herbs from U.K. retailers, and interviewed patients on food history. Thirty-two patient-cases were referred to this outbreak in England and Wales. Onsets of illness occurred between 5 March and 6 June 2007. Fifty-six percent of patient-cases were females and 90% adults (>20 years old); three were admitted to hospital as a result of Salmonella infection. Scotland, Denmark, the Netherlands, and the United States reported on 19 cases of Salmonella Senftenberg infection presenting with the outbreak strain since January 2007. Eight samples of prepacked fresh basil imported from Israel tested positive with the same strain. A minority of patients could recall the consumption of basil before illness, and some reported consumption of products where basil was a likely ingredient. Environmental investigations in Israel did not identify the contamination source. Microbiological evidence suggested an association between contamination of fresh basil and the cases of Salmonella Senftenberg infection, leading to withdrawal of basil from all potentially affected batches from the U.K. market.


PeerJ | 2016

Identification of Salmonella for public health surveillance using whole genome sequencing.

Philip M. Ashton; Satheesh Nair; Tansy Peters; Janet Bale; David Powell; Anaïs Painset; Rediat Tewolde; Ulf Schaefer; Claire Jenkins; Timothy J. Dallman; Elizabeth de Pinna; Kathie Grant

In April 2015, Public Health England implemented whole genome sequencing (WGS) as a routine typing tool for public health surveillance of Salmonella, adopting a multilocus sequence typing (MLST) approach as a replacement for traditional serotyping. The WGS derived sequence type (ST) was compared to the phenotypic serotype for 6,887 isolates of S. enterica subspecies I, and of these, 6,616 (96%) were concordant. Of the 4% (n = 271) of isolates of subspecies I exhibiting a mismatch, 119 were due to a process error in the laboratory, 26 were likely caused by the serotype designation in the MLST database being incorrect and 126 occurred when two different serovars belonged to the same ST. The population structure of S. enterica subspecies II–IV differs markedly from that of subspecies I and, based on current data, defining the serovar from the clonal complex may be less appropriate for the classification of this group. Novel sequence types that were not present in the MLST database were identified in 8.6% of the total number of samples tested (including S. enterica subspecies I–IV and S. bongori) and these 654 isolates belonged to 326 novel STs. For S. enterica subspecies I, WGS MLST derived serotyping is a high throughput, accurate, robust, reliable typing method, well suited to routine public health surveillance. The combined output of ST and serovar supports the maintenance of traditional serovar nomenclature while providing additional insight on the true phylogenetic relationship between isolates.


BMC Veterinary Research | 2008

Characterisation of Salmonella enterica serotype Typhimurium isolates from wild birds in northern England from 2005 – 2006

Laura A. Hughes; Sara Shopland; Paul Wigley; Hannah Bradon; A. J. Howard Leatherbarrow; Nicola Williams; M. Bennett; Elizabeth de Pinna; Becki Lawson; Andrew A. Cunningham; Julian Chantrey

BackgroundSeveral studies have shown that a number of serovars of Salmonella enterica may be isolated from wild birds, and it has been suggested that wild birds may play a role in the epidemiology of human and livestock salmonellosis. However, little is known about the relationship between wild bird S. enterica strains and human- and livestock- associated strains in the United Kingdom. Given the zoonotic potential of salmonellosis, the main aim of this study was to investigate the molecular epidemiology of S. enterica infections in wild birds in the north of England and, in particular, to determine if wild bird isolates were similar to those associated with disease in livestock or humans.ResultsThirty two Salmonella enterica isolates were collected from wild birds in northern England between February 2005 and October 2006, of which 29 were S. enterica serovar Typhimurium (S. Typhimurium); one S. Newport, one S. Senftenberg, and one isolate could not be classified by serotyping. Further analysis through phage typing and macro-restriction pulsed-field gel electrophoresis indicated that wild passerine deaths associated with salmonellosis were caused by closely-related S. Typhimurium isolates, some of which were clonal. These isolates were susceptible to all antimicrobials tested, capable of invading and persisting within avian macrophage-like HD11 cells in vitro, and contained a range of virulence factors associated with both systemic and enteric infections of birds and mammals. However, all the isolates lacked the sopE gene associated with some human and livestock disease outbreaks caused by S. Typhimurium.ConclusionThe wild bird isolates of S. enterica characterised in this investigation may not represent a large zoonotic risk. Molecular characterisation of isolates suggested that S. Typhimurium infection in wild passerines is maintained within wild bird populations and the causative strains may be host-adapted.


International Journal of Environmental Health Research | 2008

Prevalence, characterisation and antimicrobial resistance of Campylobacter and Salmonella in raw poultrymeat in the UK, 2003–2005

Christine L. Little; Judith F. Richardson; Robert J. Owen; Elizabeth de Pinna; E. John Threlfall

This study was conducted to determine the prevalence and antimicrobial resistance of Campylobacter and Salmonella isolates from retail poultrymeat in the UK during 2003–2005. Poultrymeat (n = 2104) were more frequently contaminated with Campylobacter (57.3%) than with Salmonella (6.6%). Chicken exhibited the highest contamination from Campylobacter (60.9%), followed by duck (50.7%), turkey (33.7%) and other poultrymeat (34.2%). Duck had the highest contamination from Salmonella (29.9%), compared with chicken (5.6%), turkey (5.6%), and other poultrymeat (8.6%). C. jejuni predominated in raw chicken, whereas C. coli predominated in turkey and duck. C. coli isolates were more likely to exhibit antimicrobial drug resistance, including quinolones, than C. jejuni. Salmonella Enteritidis was the most frequent Salmonella serotype isolated. Salmonella isolates from turkey exhibited higher rates of multiple drug resistance (55.6%) than isolates from chicken (20.9%) and duck (13.6%). The findings reinforce the importance of thorough cooking of poultrymeat and good hygiene to avoid cross-contamination.


PLOS Neglected Tropical Diseases | 2016

Molecular Surveillance Identifies Multiple Transmissions of Typhoid in West Africa

Vanessa K. Wong; Stephen Baker; Kathryn E. Holt; Chinyere Okoro; Derek Pickard; Florian Marks; Andrew J. Page; Grace Olanipekun; Huda Munir; Roxanne Alter; Paul D. Fey; Nicholas A. Feasey; François-Xavier Weill; Simon Le Hello; Peter J. Hart; Samuel Kariuki; Robert F. Breiman; Melita A. Gordon; Robert S. Heyderman; Jan Jacobs; Octavie Lunguya; Robert S. Onsare; Chisomo L. Msefula; Calman A. MacLennan; Karen H. Keddy; Anthony M. Smith; Elizabeth de Pinna; Satheesh Nair; Ben Amos; Gordon Dougan

Background The burden of typhoid in sub-Saharan African (SSA) countries has been difficult to estimate, in part, due to suboptimal laboratory diagnostics. However, surveillance blood cultures at two sites in Nigeria have identified typhoid associated with Salmonella enterica serovar Typhi (S. Typhi) as an important cause of bacteremia in children. Methods A total of 128 S. Typhi isolates from these studies in Nigeria were whole-genome sequenced, and the resulting data was used to place these Nigerian isolates into a worldwide context based on their phylogeny and carriage of molecular determinants of antibiotic resistance. Results Several distinct S. Typhi genotypes were identified in Nigeria that were related to other clusters of S. Typhi isolates from north, west and central regions of Africa. The rapidly expanding S. Typhi clade 4.3.1 (H58) previously associated with multiple antimicrobial resistances in Asia and in east, central and southern Africa, was not detected in this study. However, antimicrobial resistance was common amongst the Nigerian isolates and was associated with several plasmids, including the IncHI1 plasmid commonly associated with S. Typhi. Conclusions These data indicate that typhoid in Nigeria was established through multiple independent introductions into the country, with evidence of regional spread. MDR typhoid appears to be evolving independently of the haplotype H58 found in other typhoid endemic countries. This study highlights an urgent need for routine surveillance to monitor the epidemiology of typhoid and evolution of antimicrobial resistance within the bacterial population as a means to facilitate public health interventions to reduce the substantial morbidity and mortality of typhoid.


Applied and Environmental Microbiology | 2011

Pulsed-Field Gel Electrophoresis Supports the Presence of Host-Adapted Salmonella enterica subsp. enterica Serovar Typhimurium Strains in the British Garden Bird Population

Becki Lawson; Laura A. Hughes; T M Peters; Elizabeth de Pinna; Shinto K. John; Shaheed K. Macgregor; Andrew A. Cunningham

ABSTRACT Salmonellosis is a frequently diagnosed infectious disease of passerine birds in garden habitats within Great Britain with potential implications for human and domestic animal health. Postmortem examinations were performed on 1,477 garden bird carcasses of circa 50 species from England and Wales, 1999 to 2007 inclusive. Salmonellosis was confirmed in 263 adult birds of 10 passerine species in this 11-year longitudinal study. A subset of 124 fully biotyped Salmonella enterica subsp. enterica serovar Typhimurium isolates was examined using pulsed-field gel electrophoresis to investigate the hypothesis that these strains are host adapted and to determine whether this molecular technique offers greater resolution in understanding the epidemiology of Salmonella Typhimurium infection than phage typing alone. For the two most common phage types, definitive type (DT) 40 and DT56v, which together accounted for 97% (120/124) of isolates, pulsed-field gel electrophoresis groupings closely correlated with phage type with remarkably few exceptions. A high degree of genetic similarity (>90%) was observed within and between the two most common pulsed-field gel electrophoresis groups. No clustering or variation was found in the pulsed-field gel electrophoresis groupings by bird species, year, or geographical region beyond that revealed by phage typing. These findings support the hypothesis that there are currently two host-adapted Salmonella phage types, S. Typhimurium DT40 and DT56v, circulating widely in British garden birds and that the reservoir of infection is maintained within wild bird populations. Large-scale multilocus sequence typing studies are required to further investigate the epidemiology of this infection.


Food Microbiology | 2009

Assessment of the microbiological safety of edible dried seeds from retail premises in the United Kingdom with a focus on Salmonella spp.

Caroline Willis; Christine L. Little; S.K. Sagoo; Elizabeth de Pinna; John Threlfall

Sesame seed products have recently been associated with a number of Salmonella outbreaks in the UK and elsewhere. Aside from sesame seeds, there is little published information on the prevalence of Salmonella spp. in edible seeds. A study of 3735 samples of retail edible dried seeds in the UK was therefore carried out between October 2007 and March 2008 to assess their microbiological safety in relation to Salmonella contamination and levels of Escherichia coli, an indicator of faecal contamination. Overall, Salmonella was detected in 23 samples (0.6%), of which over half (57%) were sesame seeds. Other seeds contaminated with Salmonella were linseed (1 sample), sunflower (1 sample), alfalfa (1 sample), melon (4 samples) and mixed seeds (3 samples). E. coli was detected in 9% of samples, with 1.5% containing unsatisfactory levels (> or = 10(2)/g). These included melon, pumpkin, sesame, hemp, poppy, linseed, sunflower and mixed seeds. The UK retailers affected by the detection of Salmonella in their products recalled the contaminated batches, and Food Standards Agency food alerts were issued to advise against the consumption of affected seed products. This study highlights the importance of good hygiene practices and effective decontamination procedures during the production of these products.

Collaboration


Dive into the Elizabeth de Pinna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Wain

University of East Anglia

View shared research outputs
Researchain Logo
Decentralizing Knowledge