Elizabeth E. Hoskins
Cincinnati Children's Hospital Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth E. Hoskins.
Nature | 2011
Jason R. Spence; Christopher N. Mayhew; Scott A. Rankin; Matthew Kuhar; Jefferson Vallance; Kathryn Tolle; Elizabeth E. Hoskins; Vladimir V. Kalinichenko; Susanne I. Wells; Aaron M. Zorn; Noah F. Shroyer; James M. Wells
Studies in embryonic development have guided successful efforts to direct the differentiation of human embryonic and induced pluripotent stem cells (PSCs) into specific organ cell types in vitro. For example, human PSCs have been differentiated into monolayer cultures of liver hepatocytes and pancreatic endocrine cells that have therapeutic efficacy in animal models of liver disease and diabetes, respectively. However, the generation of complex three-dimensional organ tissues in vitro remains a major challenge for translational studies. Here we establish a robust and efficient process to direct the differentiation of human PSCs into intestinal tissue in vitro using a temporal series of growth factor manipulations to mimic embryonic intestinal development. This involved activin-induced definitive endoderm formation, FGF/Wnt-induced posterior endoderm pattering, hindgut specification and morphogenesis, and a pro-intestinal culture system to promote intestinal growth, morphogenesis and cytodifferentiation. The resulting three-dimensional intestinal ‘organoids’ consisted of a polarized, columnar epithelium that was patterned into villus-like structures and crypt-like proliferative zones that expressed intestinal stem cell markers. The epithelium contained functional enterocytes, as well as goblet, Paneth and enteroendocrine cells. Using this culture system as a model to study human intestinal development, we identified that the combined activity of WNT3A and FGF4 is required for hindgut specification whereas FGF4 alone is sufficient to promote hindgut morphogenesis. Our data indicate that human intestinal stem cells form de novo during development. We also determined that NEUROG3, a pro-endocrine transcription factor that is mutated in enteric anendocrinosis, is both necessary and sufficient for human enteroendocrine cell development in vitro. PSC-derived human intestinal tissue should allow for unprecedented studies of human intestinal development and disease.
Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2011
Abigail I. Wald; Elizabeth E. Hoskins; Susanne I. Wells; Robert L. Ferris; Saleem A. Khan
Human papillomavirus (HPV)‐positive cases of squamous cell carcinoma of the head and neck (SCCHN) have a much better disease outcome compared to SCCHN cases lacking HPV. Differences in microRNA (miRNA) expression may affect their clinical outcomes.
American Journal of Pathology | 2009
Richard J. Morreale; Teresa A. Morris; Rachael A. Mintz-Cole; Elizabeth E. Hoskins; Scott J. Balsitis; Nader Husseinzadeh; David P. Witte; Kathryn A. Wikenheiser-Brokamp; Paul F. Lambert; Susanne I. Wells
Overexpression of the DEK gene is associated with multiple human cancers, but its specific roles as a putative oncogene are not well defined. DEK transcription was previously shown to be induced by the high-risk human papillomavirus (HPV) E7 oncogene via E2F and Rb pathways. Transient DEK overexpression was able to inhibit both senescence and apoptosis in cultured cells. In at least the latter case, this mechanism involved the destabilization of p53 and the decreased expression of p53 target genes. We show here that DEK overexpression disrupts the normal differentiation program in a manner that is independent of either p53 or cell death. DEK expression was distinctly repressed upon the differentiation of cultured primary human keratinocytes, and stable DEK overexpression caused epidermal thickening in an organotypic raft model system. The observed hyperplasia involved a delay in keratinocyte differentiation toward a more undifferentiated state, and expansion of the basal cell compartment was due to increased proliferation, but not apoptosis. These phenotypes were accompanied by elevated p63 expression in the absence of p53 destabilization. In further support of bona fide oncogenic DEK activities, we report here up-regulated DEK protein levels in both human papilloma virus-positive hyperplastic murine skin and a subset of human squamous cell carcinomas. We suggest that DEK up-regulation may contribute to carcinoma development at least in part through increased proliferation and retardation of differentiation.
Oncogene | 2009
Elizabeth E. Hoskins; Teresa A. Morris; Jennifer M. Higginbotham; Nicole Spardy; Elliot Cha; Patrick Kelly; David A. Williams; Kathryn A. Wikenheiser-Brokamp; Stefan Duensing; Susanne I. Wells
Fanconi anemia (FA) is a recessive genome instability syndrome characterized by heightened cellular sensitivity to DNA damage, aplastic anemia and cancer susceptibility. Leukemias and squamous cell carcinomas (SCCs) are the most predominant FA-associated cancers, with the latter exhibiting markedly early disease onset and aggressiveness. Although studies of hematopoietic cells derived from FA patients have provided much insight into bone marrow deficiencies and leukemogenesis, molecular transforming events in FA-deficient keratinocytes, which are the cell type of origin for SCC, are poorly understood. We describe here the growth and molecular properties of FANCA-deficient versus FANCA-corrected HPV E6/E7 immortalized keratinocytes in monolayer and organotypic epithelial raft culture. In response to DNA damage, FANCA-deficient patient-derived keratinocyte cultures displayed a G2/M phase arrest, senescence and apoptosis. Organotypic raft cultures exhibited DNA repair-associated defects with more 53BP1 foci and TdT-mediated dNTP nick end labeling-positive cells over their corrected counterparts. Interestingly, together with reduced rates of DNA damage, FA correction resulted in a marked decrease in epithelial thickness and the presence of fewer cell layers. The observed FANCA-mediated suppression of hyperplasia correlated with the detection of fewer cells transiting through the cell cycle in the absence of gross differentiation abnormalities or apoptotic differences. Importantly, the knockdown of either FANCA or FANCD2 in HPV-positive keratinocytes was sufficient for increasing epithelial hyperplasia. Our findings support a new role for FA pathways in the maintenance of differentiation-dependent cell cycle exit, with the implication that FA deficiencies may contribute to the high risk of FA patients for developing HPV-associated SCC.
Cancer Research | 2009
Nicole Spardy; Kathryn Covella; Elliot Cha; Elizabeth E. Hoskins; Susanne I. Wells; Anette Duensing; Stefan Duensing
The human papillomavirus (HPV) 16 E7 oncoprotein has been reported previously to stimulate DNA damage and to activate host cell DNA damage checkpoints. How HPV-16 E7 maintains proliferation despite activated DNA damage checkpoints is incompletely understood. Here, we provide evidence that cells expressing the HPV-16 E7 oncoprotein can enter mitosis in the presence of DNA damage. We show that this activity of HPV-16 E7 involves attenuation of DNA damage checkpoint control by accelerating the proteolytic turnover of claspin. Claspin mediates the activation of CHK1 by ATR in response to replication stress, and its degradation plays a critical role in DNA damage checkpoint recovery. Expression of a nondegradable mutant of claspin was shown to inhibit mitotic entry in HPV-16 E7-expressing cells. Multiple components of the SCF(beta-TrCP)-based claspin degradation machinery were found deregulated in the presence of HPV-16 E7, including cullin 1, beta-TrCP, Aurora A, and Polo-like kinase-1 (PLK1). In contrast, no difference in the expression level of the claspin deubiquitinating enzyme USP7 was detected. Levels of Aurora A and PLK1 as well as phosphorylated PLK1 at threonine 210, a prerequisite for DNA damage checkpoint recovery, remained detectable following replication stress in HPV-16 E7-expressing cells but not in control cells. In summary, our results suggest that the HPV-16 E7 oncoprotein alleviates DNA damage checkpoint responses and promotes mitotic entry by accelerating claspin degradation through a mechanism that involves deregulation of components of the SCF(beta-TrCP)-based claspin degradation machinery.
Cancer Research | 2008
Nicole Spardy; Anette Duensing; Elizabeth E. Hoskins; Susanne I. Wells; Stefan Duensing
Expression of the high-risk human papillomavirus (HPV-16) E7 oncoprotein extends the life span of primary human keratinocytes and partially restores telomere length in the absence of telomerase. The molecular basis of this activity is incompletely understood. Here, we show that HPV-16 E7 induces an increased formation of alternative lengthening of telomeres (ALT)-associated promyelocytic leukemia bodies (APBs) in early passage primary human keratinocytes as well as HPV-negative tumor cells. This activity was found to require sequences of HPV-16 E7 involved in degradation of the retinoblastoma tumor suppressor protein as well as regions in the COOH terminus. HPV-16 E7-induced APBs contained ssDNA and several proteins that are involved in the response to DNA replication stress, most notably the Fanconi anemia D2 protein (FANCD2) as well as BRCA2 and MUS81. In line with these results, we found that FANCD2-containing APBs form in an ATR-dependent manner in HPV-16 E7-expressing cells. To directly show a role of FANCD2 in ALT, we provide evidence that knockdown of FANCD2 rapidly causes telomere dysfunction in cells that rely on ALT to maintain telomeres. Taken together, our results suggest a novel link between replication stress and recombination-based telomere maintenance that may play a role in HPV-16 E7-mediated extension of host cell life span and immortalization.
Oncogene | 2008
Elizabeth E. Hoskins; Ranjaka W. Gunawardena; Kristen B. Habash; Michael Jansen; Erik S. Knudsen; Susanne I. Wells
Fanconi anemia (FA) is a genome instability syndrome that is characterized by progressive bone marrow failure and a high risk of cancer. FA patients are particularly susceptible to leukemia as well as squamous cell carcinomas (SCCs) of the head and neck, anogenital region and skin. Thirteen complementation groups and the corresponding FA genes have been identified, and their protein products assemble into nuclear core complexes during DNA-damage responses. Much progress has been made in our understanding of post-translational FA protein modifications and physical interactions. By contrast, little is known about the control of protein availability at the level of transcription. We report here that multiple FA proteins were downregulated during the proliferative arrest of primary human keratinocytes and HeLa cells, and that the observed regulation was at a transcriptional level. Proliferative stimuli such as expression of HPV16 E7 as well as E2F1 overexpression in primary cells resulted in coordinate FA upregulation. To define the underlying mechanism, we examined the endogenous FANCD2 promoter, and detected regulated binding of members of the E2F/Rb family in chromatin immunoprecipitation assays. Finally, a 1 kb promoter fragment was sufficient to confer E2F/Rb regulation in reporter assays. Taken together, our data demonstrate FA gene co-regulation in synchrony with the cell cycle and suggest that deregulated expression of individual FA genes—in addition to FA gene mutation—may promote FA-related human cancer.
Journal of Virology | 2012
Elizabeth E. Hoskins; Richard J. Morreale; Stephen P. Werner; Jennifer M. Higginbotham; Laimonis A. Laimins; Paul F. Lambert; Darron R. Brown; Maura L. Gillison; Gerard J. Nuovo; David P. Witte; Mi-Ok Kim; Stella M. Davies; Parinda A. Mehta; Melinda Butsch Kovacic; Kathryn A. Wikenheiser-Brokamp; Susanne I. Wells
ABSTRACT High-risk human papillomaviruses (HPVs) deregulate epidermal differentiation and cause anogenital and head and neck squamous cell carcinomas (SCCs). The E7 gene is considered the predominant viral oncogene and drives proliferation and genome instability. While the implementation of routine screens has greatly reduced the incidence of cervical cancers which are almost exclusively HPV positive, the proportion of HPV-positive head and neck SCCs is on the rise. High levels of HPV oncogene expression and genome load are linked to disease progression, but genetic risk factors that regulate oncogene abundance and/or genome amplification remain poorly understood. Fanconi anemia (FA) is a genome instability syndrome characterized at least in part by extreme susceptibility to SCCs. FA results from mutations in one of 15 genes in the FA pathway, whose protein products assemble in the nucleus and play important roles in DNA damage repair. We report here that loss of FA pathway components FANCA and FANCD2 stimulates E7 protein accumulation in human keratinocytes and causes increased epithelial proliferation and basal cell layer expansion in the HPV-positive epidermis. Additionally, FANCD2 loss stimulates HPV genome amplification in differentiating cells, demonstrating that the intact FA pathway functions to restrict the HPV life cycle. These findings raise the possibility that FA genes suppress HPV infection and disease and suggest possible mechanism(s) for reported associations of HPV with an FA cohort in Brazil and for allelic variation of FA genes with HPV persistence in the general population.
Journal of Virology | 2014
Timothy M. Chlon; Elizabeth E. Hoskins; Christopher N. Mayhew; Kathryn A. Wikenheiser-Brokamp; Stella M. Davies; Parinda A. Mehta; Kasiani C. Myers; James M. Wells; Susanne I. Wells
ABSTRACT DNA repair plays a crucial role in embryonic and somatic stem cell biology and cell reprogramming. The Fanconi anemia (FA) pathway, which promotes error-free repair of DNA double-strand breaks, is required for somatic cell reprogramming to induced pluripotent stem cells (iPSC). Thus, cells from Fanconi anemia patients, which lack this critical pathway, fail to be reprogrammed to iPSC under standard conditions unless the defective FA gene is complemented. In this study, we utilized the oncogenes of high-risk human papillomavirus 16 (HPV16) to overcome the resistance of FA patient cells to reprogramming. We found that E6, but not E7, recovers FA iPSC colony formation and, furthermore, that p53 inhibition is necessary and sufficient for this activity. The iPSC colonies resulting from each of these approaches stained positive for alkaline phosphatase, NANOG, and Tra-1-60, indicating that they were fully reprogrammed into pluripotent cells. However, FA iPSC were incapable of outgrowth into stable iPSC lines regardless of p53 suppression, whereas their FA-complemented counterparts grew efficiently. Thus, we conclude that the FA pathway is required for the growth of iPSC beyond reprogramming and that p53-independent mechanisms are involved. IMPORTANCE A novel approach is described whereby HPV oncogenes are used as tools to uncover DNA repair-related molecular mechanisms affecting somatic cell reprogramming. The findings indicate that p53-dependent mechanisms block FA cells from reprogramming but also uncover a previously unrecognized defect in FA iPSC proliferation independent of p53.
MicroRNA (Shāriqah, United Arab Emirates) | 2013
Svitlana Yablonska; Elizabeth E. Hoskins; Susanne I. Wells; Saleem A. Khan
Human papillomaviruses (HPVs) are associated with the pathogenesis of a variety of human cancers, including cervical and oropharyngeal cancers. The HPV E6 and E7 oncogenes are usually expressed to high levels in these cancers. Previous studies have shown dysregulation of cellular microRNAs (miRNAs) in HPV-positive cell lines and cancer tissues and recent studies have identified a few miRNAs whose levels are altered in the presence of the viral E6 and E7 proteins. In order to identify all the cellular miRNAs whose expression may be affected by these oncoproteins, we carried out microarray analysis using human foreskin keratinocytes (HFKs) expressing either or both of these two proteins. These studies showed that 90 and 60 miRNAs were dysregulated in the presence of the E6 or the E7 protein, respectively. Of these, 43 miRNAs were similarly affected in HFK-E6 and/or HFK-E7 when compared to control cells. The joint expression of E6 and E7 proteins in HFKs caused changes in the levels of 64 miRNAs, of which 24 were similarly affected in HFK-E6 and/or HFK-E7 cells relative to controls. The microarray experiments were validated by quantitative real-time RT-PCR analysis of several differentially expressed miRNAs. Several miRNAs dysregulated by the E6 and/or E7 proteins are known to be altered in a variety of human cancers. Furthermore, previously known cellular targets of these miRNAs are involved in processes such as cell cycle regulation, apoptosis, cell-cell adhesion, cell mobility and proliferation, and alterations in their levels may contribute to HPV-associated carcinogenesis. Taken together, the results of our studies suggest that high risk HPV E6 and E7 proteins share the ability to regulate a subset of cellular miRNAs.
Collaboration
Dive into the Elizabeth E. Hoskins's collaboration.
Kathryn A. Wikenheiser-Brokamp
Cincinnati Children's Hospital Medical Center
View shared research outputs