Elizabeth Erasmus
University of the Free State
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth Erasmus.
New Journal of Chemistry | 2013
Elizabeth Erasmus; Jannie C. Swarts
Ruthenocene-containing β-diketones, RcCOCH2COR with Rc = ruthenocenyl and R = C10F21 (1), CF3 (2), C6F5 (3), C10H21 (4), CH3 (5) and C6H5 (6), were synthesised by Claisen condensation of the appropriate methyl ester with acetylruthenocene, and their spectroscopic, electrochemical and thermal properties were compared. A new synthetic route utilising 1,2,3-benzotriazol-1-ylethanone (9) or 1,2,3-benzotriazol-1-yl(ruthenocenyl)methanone (10) as a reactant, rather than the conventional esters, was found to be more efficient for β-diketone synthesis. The apparent acid dissociation constants, pKa′, of the new ruthenocene-containing β-diketones are 7.14(4) (1, R = C10F21), 9.92(3) (3, R = C6F5) and 10.06(2) (4, R = C10H21). Peak anodic potentials of the ruthenocenyl group of 1–6, pKa′ values and the FTIR ν(CO) stretching frequencies of the precursor esters, RCOOCH3, correlated linearly with the Gordy scale group electronegativity, χR, of the C10F21 (χC10F21 = 3.04), C6F5 (χC6F5 = 2.46), C10H21 (χC10H21 = 2.43) and other R-groups. An electrochemical study in the non-interacting solvent and electrolyte system CH2Cl2/0.1 mol dm−3 [N(nBu4)][B(C6F5)4] revealed electrochemically irreversible one-electron transfer Rc/Rc+ couples in the potential range 650 90% abundance under the conditions of study and the first order rate constant of enol to keto conversion varied between 220 and 50 000 s−1 depending on solvent (CDCl3 or CD3CN) and R-groups. Thermal analysis (DSC) of 1 and 4 showed no liquid crystalline mesophase behaviour but definite polymorphism was observed. β-diketones 1 and 4 exist as low temperature polymorphs below 42 °C or 12 °C respectively. The high temperature polymorphs converted to isotropic liquids at 83 °C (compound 1) or 52 °C (compound 4).
Inorganic Chemistry | 2016
Blenerhassitt E. Buitendach; Elizabeth Erasmus; Marilé Landman; J.W. Niemantsverdriet; Jannie C. Swarts
Reaction of [Mn3(OAc)6O·3H2O](+) (1) with ferrocenyl β-diketones of the type FcCOCH2COR with R = CF3 (2a) and CH3 (2b), Ph = C6H5 (2c), and Fc = Fe(II)(η(5)-C5H4)(η(5)-C5H5) (2d) yielded a series of ferrocene-functionalized β-diketonato manganese(III) complexes 3a-3d, respectively, of general formula [Mn(FcCOCHCOR)3]. The mixed-ligand β-diketonato complex [Mn(FcCOCHCOFc)2(FcCOCHCOCH3)] (4) was obtained by reacting mixtures of diketones 2b and 2d with 1. A single-crystal X-ray structure determination of 3b (Z = 2, triclinic, space group P1̅) highlighted a weak axial elongating Jahn-Teller effect and a high degree of bond conjugation. An X-ray photoelectron spectroscopic study, by virtue of linear relationships between group electronegativities of ligand R groups, χR, or ∑χR, and binding energies of both the Fe 2p3/2 and Mn 2p3/2 photoelectron lines, confirmed communication between molecular fragments of 2a-2d as well as 3a-3d. This unprecedented observation allows prediction of binding energies from known β-diketonato side group χR values.
Inorganic Chemistry | 2015
Adele van As; Chris C. Joubert; Blenerhassitt E. Buitendach; Elizabeth Erasmus; Jeanet Conradie; Andrew N. Cammidge; Isabelle Chambrier; Michael J. Cook; Jannie C. Swarts
Nonperipherally hexyl-substituted metal-free tetrabenzoporphyrin (2H-TBP, 1a) tetrabenzomonoazaporphyrin (2H-TBMAP, 2a), tetrabenzo-cis-diazaporphyrin (2H-TBDAP, 3a), tetrabenzotriazaporphyrin (2H-TBTAP, 4a), and phthalocyanine (2H-Pc, 5a), as well as their copper complexes (1b-5b), were synthesized. As the number of meso nitrogen atoms increases from zero to four, λmax of the Q-band absorption peak becomes red-shifted by almost 100 nm, and extinction coefficients increased at least threefold. Simultaneously the blue-shifted Soret (UV) band substantially decreased in intensity. These changes were related to the relative electron-density of each macrocycle expressed as the group electronegativity sum of all meso N and CH atom groups, ∑χR. X-ray photoelectron spectroscopy differentiated between the three different types of macrocyclic nitrogen atoms (the Ninner, (NH)inner, and Nmeso) in the metal-free complexes. Binding energies of the Nmeso and Ninner,Cu atoms in copper chelates could not be resolved. Copper insertion lowered especially the cathodic redox potentials, while all four observed redox processes occurred at larger potentials as the number of meso nitrogens increased. Computational chemical methods using density functional theory confirmed 1b to exhibit a Cu(II) reduction prior to ring-based reductions, while for 2b, Cu(II) reduction is the first reductive step only if the nonperipheral substituents are hydrogen. When they are methyl groups, it is the second reduction process; when they are ethyl, propyl, or hexyl, it becomes the third reductive process. Spectro-electrochemical measurements showed redox processes were associated with a substantial change in intensity of at least two main absorbances (the Q and Soret bands) in the UV spectra of these compounds.
Molecules | 2016
Blenerhassitt E. Buitendach; Elizabeth Erasmus; J.W. Niemantsverdriet; Jannie C. Swarts
A series of ferrocenyl-functionalized β-diketonato manganese(III) complexes, [Mn(FcCOCHCOR)3] with R = CF3, CH3, Ph (phenyl) and Fc (ferrocenyl) was subjected to a systematic XPS study of the Mn 2p3/2 and Fe 2p3/2 core-level photoelectron lines and their satellite structures. A charge-transfer process from the β-diketonato ligand to the Mn(III) metal center is responsible for the prominent shake-up satellite peaks of the Mn 2p photoelectron lines and the shake-down satellite peaks of the Fe 2p photoelectron lines. Multiplet splitting simulations of the photoelectron lines of the Mn(III) center of [Mn(FcCOCHCOR)3] resemble the calculated Mn 2p3/2 envelope of Mn3+ ions well, indicating the Mn(III) centers are in the high spin state. XPS spectra of complexes with unsymmetrical β-diketonato ligands (i.e., R not Fc) were described with two sets of multiplet splitting peaks representing fac and the more stable mer isomers respectively. Stronger electron-donating ligands stabilize fac more than mer isomers. The sum of group electronegativities, ΣχR, of the β-diketonato pendant side groups influences the binding energies of the multiplet splitting and charge transfer peaks in both Mn and Fe 2p3/2 photoelectron lines, the ratio of satellite to main peak intensities, and the degree of covalence of the Mn–O bond.
Metal-based Drugs | 2008
M. David Maree; Eberhard W. Neuse; Elizabeth Erasmus; Jannie C. Swarts
The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymers under mild coupling conditions has been achieved utilising the coupling reagent O-benzotriazolyl-N,N,N′,N′-tetramethyluronium hexafluorophosphate to promote formation of the biodegradable amide bond. Even though the parent antineoplastic ferrocene and phthalocyanine derivatives are themselves insoluble in water at pH < 7, the new carrier-drug conjugates that were obtained are well water-soluble.
Langmuir | 2012
Elizabeth Erasmus; J.W. Niemantsverdriet; Jannie C. Swarts
The bimetallic paddlewheel catalyst precursor, [Pd(II)Co(II)(μ-OOCCH(3))(4)] H(2)O·2CH(3)COOH (1), prepared from [Pd(3)(μ-OOCCH(3))(6)] and [Co(OOCCH(3))(2)], was used as a single source precursor to prepare, after binding to a surface-hydroxylated silicon wafer and oxidation, the bimetallic oxides of Pd(IV)Co(III)/SiO(2) catalyst supported on a model planar (i.e., two-dimensional) silicon wafer. This catalyst catalyzes the aerobic oxidation of alcohols to its corresponding carbonyl compounds. The bimetallic tetracarboxylato catalyst precursor was bonded to the surface-hydroxylated silicon wafer by spin-coating and also by grafting. X-ray photoelectron spectroscopy (XPS) revealed that one of the four μ-acetato bridging ligands was substituted by Si-O fragments in a covalent bond formation process during grafting of 1 onto the wafer. In contrast, during the spin-coating process, all four acetato ligands remained intact during fixation on the silicon surface. Upon oxidation and workup, the grafted samples Pd:Co ratio remained unchanged (1.0:1.3), whereas the spin-coated samples Pd content decreased with respect to Co content. XPS determined binding energies were interpreted to imply that after oxidation in an oxygen/argon mixture of the grafted sample both Pd(II) and Co(II) were oxidized to produce PdO(2) (337.5 eV) and Co(III)(2)O(3) (781.1 eV) which most probably interacts with the silicon surface via Pd(IV)-O-Si and Co(III)-O-Si bonds. Solvent free aerobic oxidation of octadecanol to its corresponding carbonyl compound was achieved on this oxidized Pd(IV)Co(III)/SiO(2) model catalyst using molecular oxygen as oxidant under solvent-free conditions. The use of the single source catalyst precursor, 1, resulted in a Pd(IV)Co(III)/SiO(2) catalyst with superior catalytic activity toward the oxidation of octadecanol over a catalyst prepared from a physical mixture of the separate reactant compounds tripalladium(II) hexaacetate and cobalt(II) diacetate.
RSC Advances | 2017
Roxanne Gostynski; Jeanet Conradie; Elizabeth Erasmus
DFT and XPS studies were conducted on a series of nine manganese(III) complexes of the general formula [Mn(β-diketonato)3], with the ligand β-diketonato = dipivaloylmethanato (1), acetylacetonato (2), benzoylacetonato (3), dibenzoylmethanato (4), trifluoroacetylacetonato (5), trifluorothenoylacetonato (6), trifluorofuroylacetonato (7), trifluorobenzoylacetonato (8) and hexafluoroacetylacetonato (9). The binding energy position of the main and satellite structures of the Mn 2p3/2 photoelectron line, as well as the spin–orbit splitting, gave insight into the electronic structure of these manganese(III) complexes. DFT calculations showed that an experimental sample of the d4 [Mn(β-diketonato)3] complex can contain a mixture of different bond stretch isomers and different electronic states, in dynamic equilibrium with one other. The presence of more than one isomer in the experimental sample, as well as interaction between an unpaired 2p electron (originating after photoemission) and an unpaired 3d electron, which aligned anti-parallel to the unpaired 2p electron, caused broadening of the Mn 2p photoelectron lines. Multiplet splitting simulations of these photoelectron lines, similar to those calculated by Gupta and Sen for the free Mn(III) ion, gave good fits with the observed Mn 2p3/2 photoelectron lines. The XPS spectra of complexes with unsymmetrical β-diketonato ligands were simulated with two sets of multiplet splitting peaks, representing both the mer and fac isomers. The satellite structures obtained in both the Mn 2p3/2 photoelectron line (shake-up peaks) and the ligand F 1s photoelectron line (shake-down peaks), are representative of the ligand-to-metal charge transfer during photoionisation. The binding energies of the Mn 2p, F 1s and S 2p electrons, as well as the amount of charge transfer from ligand-to-metal, are both dependent on the electronegativity of the different groups attached to the β-diketonato ligand.
Organometallics | 2010
Alexander Hildebrandt; Tobias Rüffer; Elizabeth Erasmus; Jannie C. Swarts; Heinrich Lang
Inorganica Chimica Acta | 2010
Henno J. Gericke; Nicola I. Barnard; Elizabeth Erasmus; Jannie C. Swarts; Michael J. Cook; Manuel A. S. Aquino
Organometallics | 2012
J. Matthäus Speck; Ron Claus; Alexander Hildebrandt; Tobias Rüffer; Elizabeth Erasmus; Lydia van As; Jannie C. Swarts; Heinrich Lang