Elizabeth Falkenstein
West Virginia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth Falkenstein.
Comparative Biochemistry and Physiology B | 2003
Melvin Simoyi; Elizabeth Falkenstein; Knox Van Dyke; Kenneth P. Blemings; Hillar Klandorf
Urate oxidase is not present in birds yet allantoin, a product of this enzyme, has been measured in birds. Studies were designed to compare the concentrations of plasma purine derivatives in chickens and turkeys fed inosine-supplemented diets. The first study consisted of 12 male chicks that were fed diets supplemented with 0.6 mol inosine or hypoxanthine per kilogram diet from 3- to 6-week-old. Study 2 consisted of 12 turkey poults (toms) fed inosine-supplemented diets (0.7 mol/kg) from 6- to 8-week-old. Plasma allantoin and oxypurines concentrations were measured weekly using high performance liquid chromatography. Plasma uric acid (PUA) in chickens fed inosine-supplemented diets increased from 0.31 to 1.34 mM (P<0.05) at the end of week 2. In turkeys, those fed control diet had 0.17 mM PUA concentration compared to 0.3 mM in those fed the inosine diet at week 2 (P<0.05). Allantoin concentration increased in chickens from week 1 to 2 while a decrease was observed in turkeys (P<0.005) for both treatments. These data show that allantoin is present in turkey and chicken plasma. The presence of allantoin in avian plasma is consistent with uric acid acting as an antioxidant in these species.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2010
M. D. Carro; Elizabeth Falkenstein; W.J. Radke; Hillar Klandorf
The purpose of this study was to determine the effects of allopurinol (AL) on xanthine oxidoreductase (XOR) activity and uric acid (UA) levels in chickens. Thirty 5-week-old broilers were divided into three groups and fed 0 (control), 25 (AL25) or 50 (AL50) mg AL per kg of body mass for 5 weeks. Chicks were weighed twice weekly and leukocyte oxidative activity (LOA) and plasma purine levels were determined weekly in five birds per group. Chicks were sacrificed after 2 or 5 weeks, and samples from tissues were taken for analysis of XOR activity. Plasma UA concentrations were lower (P<0.001) and xanthine and hypoxanthine concentrations were greater (P<0.001) in AL25 and AL50 birds compared to controls, whereas no differences (P=0.904) were detected in allantoin concentrations. By week 5, body mass was reduced (P<0.001) to 84.0 and 65.1% of that in controls for AL25 and AL50 broilers, respectively, and LOA was 4.1 times greater (P<0.05) in AL25 compared to control birds. Liver XOR activity was increased by 1.1 and 1.2 times in AL25 and AL50 birds, but there was no change (P>0.05) in XOR activity in the pancreas and intestine. These results suggest that AL effect on XOR activity is tissue dependent.
Poultry Science | 2009
M. D. Carro; Elizabeth Falkenstein; Kenneth P. Blemings; Hillar Klandorf
Xanthine oxidoreductase (XOR) is the enzyme responsible for the synthesis of uric acid, which exists primarily in the dehydrogenase form in birds. Uric acid is the major end product of the metabolism of nitrogen-containing compounds in birds and it functions as an antioxidant to reduce oxidative stress. Despite the importance of this enzyme, the tissue distribution of XOR in physiologically normal chickens is not well known. In this study, we analyzed XOR activity in extracts of 8 tissues from broilers at 7 and 10 wk of age. No differences in XOR activity due to the age were found in any tissue. Liver and kidney showed the greatest activity, that in the kidney being about 89% of the activity in the liver. Enzyme activity in intestine and pancreas was about 60 and 37% of that in the liver. All breast muscle, heart, and lung samples showed enzyme activity, but values were only 3.0, 1.2, and 0.6% of those found in the liver. Traces of enzyme activity were also detected in 3 out of 10 brain samples, and no activity was found in the plasma. Our results show that XOR distribution in chickens differs from that in mammals, in which the highest levels have been found in liver and intestine. An additional objective was the evaluation of the effect of pH (7.2, 7.7, 8.2, and 8.7) and temperature (25 and 41 degrees C) on the enzyme activity in liver and kidney samples. Temperature had a similar effect on both tissues, with the activity at 25 degrees C being about 30% of that measured at 41 degrees C. At 41 degrees C, the enzyme activity in liver and kidney decreased quadratically as pH decreased from 8.7 to 7.2. The highest activity in kidney was measured at pH 8.2, although there were no differences between enzyme activities at pH 8.7 or 8.2 in the liver. Our results indicate that the optimum pH of the enzyme in chicken liver and kidney is around 8.2.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2008
Christen Seaman; Joseph Moritz; Elizabeth Falkenstein; Knox Van Dyke; Giovanni Casotti; Hillar Klandorf
The objective of these studies was to determine whether inosine, a precursor of the antioxidant uric acid, can ameliorate hemin-induced oxidative stress. Dietary inclusion of inosine was begun either before or after hemin-induced oxidative stress. Broilers (4 weeks) were divided into four treatment groups (Control, Hemin, Inosine, Hemin/Inosine). Throughout the study control birds (n=10) were injected daily with a buffer solution, while hemin birds (n=10) were injected daily (i.p.) with a 20 mg/kg body weight hemin buffer solution. Leukocyte oxidative activity (LOA) and concentrations of plasma uric acid (PUA) were measured. Results from the first study showed that hemin birds had increased levels of LOA (P=0.0333) and lower PUA (P=0.1174). On day 10, control and hemin birds were subdivided into inosine birds (n=5) and hemin/inosine birds (n=5). These birds were given 0.6 M/kg of feed/day of dry inosine. Plasma concentrations of uric acid and LOA were then measured on day 15. Results showed that inosine raised concentrations of PUA (P=0.0001) and lowered LOA (P=0.0044) as induced by hemin. In the second study pretreatment of broilers with hemin prevented the increase in LOA induced by hemin (P=0.0001). These results show that modulating the concentrations of uric acid can markedly affect oxidative stress.
Poultry Science | 2012
T. Settle; M. D. Carro; Elizabeth Falkenstein; W.J. Radke; Hillar Klandorf
The purpose of these studies was to determine the effects of uric acid (UA) and inosine administration on xanthine oxidoreductase activity in broilers. In experiment one, 25 broilers were assigned to 5 treatment groups: control, AL (25 mg of allopurinol/kg of body mass), AR (AL for 2 wk followed by allopurinol withdrawal over wk 3), UAF (AL plus 6.25 g of UA sodium salt/kg of feed), and UAI (AL plus 120 mg of UA sodium salt injected daily). The UA administration had no effect on plasma concentration of UA (P > 0.05), and all allopurinol-treated birds had lower (P < 0.05) UA levels than controls. The UA concentrations were restored in both plasma and kidney of AR birds at wk 3, but liver UA concentrations remained lower. Whereas xanthine oxidoreductase (XOR) activity in the liver (LXOR) was reduced (P < 0.05) by allopurinol treatment, XOR activity in the kidney (KXOR) was not affected (P = 0.05). In experiment two, 3 groups of 5 birds each were fed 0 (control), 0.6 M inosine/kg of feed (INO), or INO plus 50 mg of allopurinol/kg of body mass (INOAL). The INOAL birds showed lower total LXOR activity, but KXOR activity was not affected. Both INO and INOAL birds had higher plasma and kidney UA concentrations than controls. The results suggest that regulation of UA production is tissue dependent.
Poultry Science | 2015
T. Settle; Elizabeth Falkenstein; Hillar Klandorf
Birds have a remarkable longevity for their body size despite an increased body temperature, higher metabolic rate, and increased blood glucose concentrations compared to most mammals. As the end-product of purine degradation, uric acid (UA) is generated in the xanthine/hypoxanthine reactions catalyzed by xanthine oxidoreductase (XOR). In the first study, Cobb × Cobb broilers (n = 12; 4 weeks old) were separated into 2 treatments (n = 6); control (CON) and allopurinol (AL) 35 mg/kg BW (ALLO). The purpose of this study was to assess mitochondrial function in broiler chickens in response to potential oxidative stress generated from the administration of AL for 1 wk. There was a significant reduction in state 3 respiration (P = 0.01) and state 4 respiration (P = 0.007) in AL-treated birds compared to the controls. The purpose of the second study was to assess the effect of AL on gene expression of inflammatory cytokines interferon-γ (IFN)-γ, IL-1β, IL-6, and IL-12p35, as well as inducible nitric oxide synthase and XOR in liver tissue. Cobb × Cobb broilers were separated into two groups at 4 wk age (n = 10); CON and ALLO. After 1 wk AL treatment, half of the birds in each group (CON 1 and ALLO 1) were euthanized while the remaining birds continued on AL treatment for an additional week (CON 2 and ALLO 2). A significant increase in gene expression of XOR, IFN-γ, IL-1β, and IL-12p35 in ALLO 2 birds as compared to birds in CON 2 was detected. Liver UA content was significantly decreased in both ALLO 1(P = 0.003) and ALLO 2 (P = 0.012) birds when compared to CON 1 and CON 2, respectively. The AL reduced liver UA concentrations and increased expression of inflammatory cytokines. Additional studies are needed to determine if AL causes a direct effect on mitochondria or if mitochondrial dysfunction observed in liver mitochondria was due indirectly through increased oxidative stress or increased inflammation.
Human–Wildlife Interactions | 2010
Crissa Cooey; Jesse A. Fallon; Michael L. Avery; James T. Anderson; Elizabeth Falkenstein; Hillar Klandorf
International Journal of Poultry Science | 2014
T. Settle; S.S. Leonard; Elizabeth Falkenstein; N. Fix; K. Van Dyke; Hillar Klandorf
The FASEB Journal | 2014
T. Settle; William Radke; Elizabeth Falkenstein; Hillar Klandorf
The FASEB Journal | 2010
T. Settle; Maria Dolores Carro; Elizabeth Falkenstein; Hillar Klandorf