Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Holley-Guthrie is active.

Publication


Featured researches published by Elizabeth Holley-Guthrie.


Journal of Virology | 2000

Epstein-Barr Virus Immediate-Early Proteins BZLF1 and BRLF1 Activate the ATF2 Transcription Factor by Increasing the Levels of Phosphorylated p38 and c-Jun N-Terminal Kinases

Amy L. Adamson; Dayle Darr; Elizabeth Holley-Guthrie; Robert A. Johnson; Amy Mauser; Jennifer Swenson; Shannon C. Kenney

ABSTRACT Expression of either Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) or BRLF1 (R) is sufficient to convert EBV infection from the latent to lytic form. Disruption of viral latency requires transcriptional activation of the Z and R promoters. The Z and R proteins are transcriptional activators, and each immediate-early protein activates expression of the other immediate-early protein. Z activates the R promoter through a direct binding mechanism. However, R does not bind directly to the Z promoter. In this study, we demonstrate that the ZII element (a cyclic AMP response element site) in the Z promoter is required for efficient activation by R. The ZII element has been shown to be important for induction of lytic EBV infection by tetradecanoyl phorbol acetate and surface immunoglobulin cross-linking and is activated by Z through an indirect mechanism. We demonstrate that both R and Z activate the cellular stress mitogen-activated protein (MAP) kinases, p38 and JNK, resulting in phosphorylation (and activation) of the cellular transcription factor ATF2. Furthermore, we show that the ability of R to induce lytic EBV infection in latently infected cells is significantly reduced by inhibition of either the p38 kinase or JNK pathways. In contrast, inhibition of stress MAP kinase pathways does not impair the ability of Z expression vectors to disrupt viral latency, presumably because expression of Z under the control of a strong heterologous promoter bypasses the need to activate Z transcription. Thus, both R and Z can activate the Z promoter indirectly by inducing ATF2 phosphorylation, and this activity appears to be important for R-induced disruption of viral latency.


Journal of Virology | 2005

Epstein-Barr Virus Lytic Infection Contributes to Lymphoproliferative Disease in a SCID Mouse Model

Gregory K. Hong; Margaret L. Gulley; Wen Hai Feng; Henri Jacques Delecluse; Elizabeth Holley-Guthrie; Shannon C. Kenney

ABSTRACT Most Epstein-Barr virus (EBV)-positive tumor cells contain one of the latent forms of viral infection. The role of lytic viral gene expression in EBV-associated malignancies is unknown. Here we show that EBV mutants that cannot undergo lytic viral replication are defective in promoting EBV-mediated lymphoproliferative disease (LPD). Early-passage lymphoblastoid cell lines (LCLs) derived from EBV mutants with a deletion of either viral immediate-early gene grew similarly to wild-type (WT) virus LCLs in vitro but were deficient in producing LPD when inoculated into SCID mice. Restoration of lytic EBV gene expression enhanced growth in SCID mice. Acyclovir, which prevents lytic viral replication but not expression of early lytic viral genes, did not inhibit the growth of WT LCLs in SCID mice. Early-passage LCLs derived from the lytic-defective viruses had substantially decreased expression of the cytokine interleukin-6 (IL-6), and restoration of lytic gene expression reversed this defect. Expression of cellular IL-10 and viral IL-10 was also diminished in lytic-defective LCLs. These results suggest that lytic EBV gene expression contributes to EBV-associated lymphoproliferative disease, potentially through induction of paracrine B-cell growth factors.


Molecular and Cellular Biology | 1994

The bZIP transactivator of Epstein-Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF-kappa B.

David Gutsch; Elizabeth Holley-Guthrie; Qin Zhang; Bernd Stein; Michael A. Blanar; Albert S. Baldwin; Shannon C. Kenney

The Epstein-Barr virus (EBV) BZLF1 (Z) immediate-early transactivator initiates the switch between latent and productive infection in B cells. The Z protein, which has homology to the basic leucine zipper protein c-Fos, transactivates the promoters of several replicative cycle proteins. Transactivation efficiency of the EBV BMRF1 promoter by Z is cell type dependent. In B cells, in which EBV typically exists in a latent form, Z activates the BMRF1 promoter inefficiently. We have discovered that the p65 component of the cellular factor NF-kappa B inhibits transactivation of several EBV promoters by Z. Furthermore, the inhibitor of NF-kappa B, I kappa B alpha, can augment Z-induced transactivation in the B-cell line Raji. Using glutathione S-transferase fusion proteins and coimmunoprecipitation studies, we demonstrate a direct interaction between Z and p65. This physical interaction, which requires the dimerization domain of Z and the Rel homology domain of p65, can be demonstrated both in vitro and in vivo. Inhibition of Z transactivation function by NF-kappa B p65, or possibly by other Rel family proteins, may contribute to the inefficiency of Z transactivator function in B cells and may be a mechanism of maintaining B-cell-specific viral latency.


Journal of Immunology | 2009

Critical Role of Apoptotic Speck Protein Containing a Caspase Recruitment Domain (ASC) and NLRP3 in Causing Necrosis and ASC Speck Formation Induced by Porphyromonas gingivalis in Human Cells

Max Tze Han Huang; Debra J. Taxman; Elizabeth Holley-Guthrie; Chris B. Moore; Stephen B. Willingham; Victoria J. Madden; Rebecca Keyser Parsons; Gerald L. Featherstone; Roland R. Arnold; Brian P. O'Connor; Jenny P.-Y. Ting

Periodontal disease is a chronic inflammatory disorder that leads to the destruction of tooth-supporting tissue and affects 10–20 million people in the U.S. alone. The oral pathogen Porphyromonas gingivalis causes inflammatory host response leading to periodontal and other secondary inflammatory diseases. To identify molecular components that control host response to P. gingivalis in humans, roles for the NLR (NBD-LRR) protein, NLRP3 (cryopyrin, NALP3), and its adaptor apoptotic speck protein containing a C-terminal caspase recruitment domain (ASC) were studied. P. gingivalis strain A7436 induces cell death in THP1 monocytic cells and in human primary peripheral blood macrophages. This process is ASC and NLRP3 dependent and can be replicated by P. gingivalis LPS and Escherichia coli. P. gingivalis-induced cell death is caspase and IL-1 independent and exhibits morphological features consistent with necrosis including loss of membrane integrity and release of cellular content. Intriguingly, P. gingivalis-induced cell death is accompanied by the formation of ASC aggregation specks, a process not previously described during microbial infection. ASC specks are observed in P. gingivalis-infected primary human mononuclear cells and are dependent on NLRP3. This work shows that P. gingivalis causes ASC- and NLRP3-dependent necrosis, accompanied by ASC speck formation.


Journal of Biological Chemistry | 2011

The NLR Adaptor ASC/PYCARD Regulates DUSP10, Mitogen-activated Protein Kinase (MAPK), and Chemokine Induction Independent of the Inflammasome

Debra J. Taxman; Elizabeth Holley-Guthrie; Max Tze Han Huang; Christopher Brooks Moore; Daniel T. Bergstralh; Irving C. Allen; Yu Lei; Denis Gris; Jenny P.-Y. Ting

ASC/PYCARD is a common adaptor for a diverse set of inflammasomes that activate caspase-1, most prominently the NLR-based inflammasome. Mounting evidence indicates that ASC and these NLRs also elicit non-overlapping functions, but the molecular basis for this difference is unclear. To address this, we performed microarray and network analysis of ASC shRNA knockdown cells. In pathogen-infected cells, an ASC-dependent interactome is centered on the mitogen-activated protein kinase (MAPK) ERK and on multiple chemokines. ASC did not affect the expression of MAPK but affected its phosphorylation by pathogens and Toll-like receptor agonists via suppression of the dual-specificity phosphatase, DUSP10/MKP5. Chemokine induction, DUSP function, and MAPK phosphorylation were independent of caspase-1 and IL-1β. MAPK activation by pathogen was abrogated in Asc−/− but not Nlrp3−/−, Nlrc4−/−, or Casp1−/− macrophages. These results demonstrate a function for ASC that is distinct from the inflammasome in modulating MAPK activity and chemokine expression and further identify DUSP10 as a novel ASC target.


Journal of Virology | 2002

The Epstein-Barr Virus Immediate-Early Protein BZLF1 Induces Expression of E2F-1 and Other Proteins Involved in Cell Cycle Progression in Primary Keratinocytes and Gastric Carcinoma Cells

Amy Mauser; Elizabeth Holley-Guthrie; Adam Zanation; Wendall Yarborough; William Kaufmann; Aloysius J. Klingelhutz; William T. Seaman; Shannon C. Kenney

ABSTRACT The Epstein-Barr virus (EBV) immediate-early protein BZLF1 mediates the switch between the latent and lytic forms of EBV infection and has been previously shown to induce a G1/S block in cell cycle progression in some cell types. To examine the effect of BZLF1 on cellular gene expression, we performed microarray analysis on telomerase-immortalized human keratinocytes that were mock infected or infected with a control adenovirus vector (AdLacZ) or a vector expressing the EBV BZLF1 protein (AdBZLF1). Cellular genes activated by BZLF1 expression included E2F-1, cyclin E, Cdc25A, and a number of other genes involved in cell cycle progression. Immunoblot analysis confirmed that BZLF1 induced expression of E2F-1, cyclin E, Cdc25A, and stem loop binding protein (a protein known to be primarily expressed during S phase) in telomerase-immortalized keratinocytes. Similarly, BZLF1 increased expression of E2F-1, cyclin E, and stem loop binding protein (SLBP) in primary tonsil keratinocytes. In contrast, BZLF1 did not induce E2F-1 expression in normal human fibroblasts. Cell cycle analysis revealed that while BZLF1 dramatically blocked G1/S progression in normal human fibroblasts, it did not significantly affect cell cycle progression in primary human tonsil keratinocytes. Furthermore, in EBV-infected gastric carcinoma cells, the BZLF1-positive cells had an increased number of cells in S phase compared to the BZLF1-negative cells. Thus, in certain cell types (but not others), BZLF1 enhances expression of cellular proteins associated with cell cycle progression, which suggests that an S-phase-like environment may be advantageous for efficient lytic EBV replication in some cell types.


Journal of Virology | 2001

Epstein-Barr Virus Immediate-Early Protein BRLF1 Interacts with CBP, Promoting Enhanced BRLF1 Transactivation

Jennifer Swenson; Elizabeth Holley-Guthrie; Shannon C. Kenney

ABSTRACT The Epstein-Barr virus (EBV) immediate-early protein BRLF1 is a transcriptional activator that mediates the switch from latent to lytic viral replication. Many transcriptional activators function, in part, due to an interaction with histone acetylases, such as CREB-binding protein (CBP). Here we demonstrate that BRLF1 interacts with the amino and carboxy termini of CBP and that multiple domains of the BRLF1 protein are necessary for this interaction. Furthermore, we show that the interaction between BRLF1 and CBP is important for BRLF1-induced activation of the early lytic EBV gene SM in Raji cells.


Journal of Biological Chemistry | 2012

Porphyromonas gingivalis Mediates Inflammasome Repression in Polymicrobial Cultures through a Novel Mechanism Involving Reduced Endocytosis

Debra J. Taxman; Karen V. Swanson; Peter M. Broglie; Haitao Wen; Elizabeth Holley-Guthrie; Max Tze Han Huang; Justin B. Callaway; Tim K. Eitas; Joseph A. Duncan; Jenny P.-Y. Ting

Background: Porphyromonas gingivalis has low immunogenicity and synergizes with other periodontal pathogens, including Fusobacterium nucleatum. Results: Porphyromonas gingivalis selectively represses the activation of the IL-1β-processing inflammasome by Fusobacterium nucleatum and inducers that are endocytosed. Conclusion: Porphyromonas gingivalis suppresses inflammasome activity through a novel mechanism involving modulation of endocytosis. Significance: Inflammasome suppression may contribute to periodontitis and other chronic diseases. The interleukin (IL)-1β-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1β processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1β processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis.


Molecular and Cellular Biology | 1992

The cellular oncogene c-myb can interact synergistically with the Epstein-Barr virus BZLF1 transactivator in lymphoid cells.

Shannon C. Kenney; Elizabeth Holley-Guthrie; E. B. Quinlivan; David Gutsch; Qin Zhang; T. Bender; J.-F. Giot; A. Sergeant

Regulation of replicative functions in the Epstein-Barr virus (EBV) genome is mediated through activation of a virally encoded transcription factor, Z (BZLF1). We have shown that the Z gene product, which binds to AP-1 sites as a homodimer and has sequence similarity to c-Fos, can efficiently activate the EBV early promoter, BMRF1, in certain cell types (i.e., HeLa cells) but not others (i.e., Jurkat cells). Here we demonstrate that the c-myb proto-oncogene product, which is itself a DNA-binding protein and transcriptional transactivator, can interact synergistically with Z in activating the BMRF1 promoter in Jurkat cells (a T-cell line) or Raji cells (an EBV-positive B-cell), whereas the c-myb gene product by itself has little effect. The simian virus 40 early promoter is also synergistically activated by the Z/c-myb combination. Synergistic transactivation of the BMRF1 promoter by the Z/c-myb combination appears to involve direct binding by the Z protein but not the c-myb protein. A 30-bp sequence in the BMRF1 promoter which contains a Z binding site (a consensus AP-1 site) is sufficient to transfer high-level lymphoid-specific responsiveness to the Z/c-myb combination to a heterologous promoter. That the c-myb oncogene product can interact synergistically with an EBV-encoded member of the leucine zipper protein family suggests c-myb is likely to engage in similar interactions with cellularly encoded transcription factors.


Journal of Virology | 2002

The Epstein-Barr Virus Immediate-Early Protein BZLF1 Induces both a G2 and a Mitotic Block

Amy Mauser; Elizabeth Holley-Guthrie; Dennis A. Simpson; William K. Kaufmann; Shannon C. Kenney

ABSTRACT The Epstein-Barr virus immediate-early protein BZLF1 is a transcriptional activator that mediates the switch from latent to lytic infection. Here we demonstrate that BZLF1 induces both a G2 block and a mitotic block in HeLa cells and inhibits chromosome condensation. While the G2 block is associated with decreased cyclin B1 in host cells and can be rescued by overexpression of cyclin B1, the mechanism for the mitotic defect is as yet undetermined.

Collaboration


Dive into the Elizabeth Holley-Guthrie's collaboration.

Top Co-Authors

Avatar

Shannon C. Kenney

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David Gutsch

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Eng-Chun Mar

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jenny P.-Y. Ting

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Debra J. Taxman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

James Kamine

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Qin Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Amy Mauser

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jung-Chung Lin

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Max Tze Han Huang

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge