Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth J. Luna is active.

Publication


Featured researches published by Elizabeth J. Luna.


Biochimica et Biophysica Acta | 1977

Lateral phase separations in binary mixtures of phospholipids having different charges and different crystalline structures

Elizabeth J. Luna; Harden M. McConnell

Synthetic dipalmitoyl phosphatidylserine exhibits a sharp chain-melting transition temperature at 51 degrees C as judged by partitioning of the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl. Phase diagrams representing lateral phase separations in binary mixtures of dipalmitoyl phosphatidylserine with dipalmitoyl phosphatidylcholine as well as with dimyristoyl phosphatidylcholine are derived from paramagnetic resonance determinations of 2,2,6,6,-tetramethylpiperidine-1-oxyl partitioning, freeze-fracture electron microscopic studies and theoretical arguments that limit the general form of acceptable phase diagrams. The reported phase diagrams are the first to describe binary mixtures in which one lipid is charged and the second lipid uncharged. These phase diagrams also are the first to include the problem of solid phases with different crystalline conformations as it relates to the occurrence of a pretransition in phosphatidylcholines and its absence in phosphatidylserines. In addition to the phase diagrams reported here for these two binary mixtures, a brief theoretical discussion is given of other possible phase diagrams that may be appropriate to other lipid mixtures with particular consideration given to the problem of crystalline phases of different structures and the possible occurrence of second-order phase transitions in these mixtures.


Plant Physiology | 2004

Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides

T. Kaye Peterman; Yamini M. Ohol; Lisa J. McReynolds; Elizabeth J. Luna

Membrane trafficking is central to construction of the cell plate during plant cytokinesis. Consequently, a detailed understanding of the process depends on the characterization of molecules that function in the formation, transport, targeting, and fusion of membrane vesicles to the developing plate, as well as those that participate in its consolidation and maturation into a fully functional partition. Here we report the initial biochemical and functional characterization of patellin1 (PATL1), a novel cell-plate-associated protein that is related in sequence to proteins involved in membrane trafficking in other eukaryotes. Analysis of the Arabidopsis genome indicated that PATL1 is one of a small family of Arabidopsis proteins, characterized by a variable N-terminal domain followed by two domains found in other membrane-trafficking proteins (Sec14 and Golgi dynamics domains). Results from immunolocalization and biochemical fractionation studies suggested that PATL1 is recruited from the cytoplasm to the expanding and maturing cell plate. In vesicle-binding assays, PATL1 bound to specific phosphoinositides, important regulators of membrane trafficking, with a preference for phosphatidylinositol(5)P, phosphatidylinositol(4,5)P2, and phosphatidylinositol(3)P. Taken together, these findings suggest a role for PATL1 in membrane-trafficking events associated with cell-plate expansion or maturation and point to the involvement of phosphoinositides in cell-plate biogenesis.


Journal of Cell Science | 2012

Supervillin couples myosin-dependent contractility to podosomes and enables their turnover

Ridhirama Bhuwania; Susanne Cornfine; Zhiyou Fang; Marcus Krüger; Elizabeth J. Luna; Stefan Linder

Podosomes are actin-rich adhesion and invasion structures. Especially in macrophages, podosomes exist in two subpopulations, large precursors at the cell periphery and smaller podosomes (successors) in the cell interior. To date, the mechanisms that differentially regulate these subpopulations are largely unknown. Here, we show that the membrane-associated protein supervillin localizes preferentially to successor podosomes and becomes enriched at precursors immediately before their dissolution. Consistently, podosome numbers are inversely correlated with supervillin protein levels. Using deletion constructs, we find that the myosin II regulatory N-terminus of supervillin [SV(1–174)] is crucial for these effects. Phosphorylated myosin light chain (pMLC) localizes at supervillin-positive podosomes, and time-lapse analyses show that enrichment of GFP–supervillin at podosomes coincides with their coupling to contractile myosin-IIA-positive cables. We also show that supervillin binds only to activated myosin IIA, and a dysregulated N-terminal construct [SV(1–830)] enhances pMLC levels at podosomes. Thus, preferential recruitment of supervillin to podosome subpopulations might both require and induce actomyosin contractility. Using siRNA and pharmacological inhibition, we demonstrate that supervillin and myosin IIA cooperate to regulate podosome lifetime, podosomal matrix degradation and cell polarization. In sum, we show here that podosome subpopulations differ in their molecular composition and identify supervillin, in cooperation with myosin IIA, as a crucial factor in the regulation of podosome turnover and function.


Traffic | 2010

The Membrane‐Associated Protein, Supervillin, Accelerates F‐Actin‐Dependent Rapid Integrin Recycling and Cell Motility

Zhiyou Fang; Norio Takizawa; Korey A. Wilson; Tara C. Smith; Anna M. Delprato; Michael W. Davidson; David G. Lambright; Elizabeth J. Luna

In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F‐actin‐ and myosin II‐binding protein that tightly associates with signaling proteins in cholesterol‐rich, ‘lipid raft’ membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin‐knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed‐end inhibitor, cytochalasin D, suggests that both treatments affect actin‐dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal‐regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F‐actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin‐based cell motility.


Molecular Biology of the Cell | 2008

Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency.

Jessica Lynn Crowley; Tara C. Smith; Zhiyou Fang; Norio Takizawa; Elizabeth J. Luna

Tumor cells use actin-rich protrusions called invadopodia to degrade extracellular matrix (ECM) and invade tissues; related structures, termed podosomes, are sites of dynamic ECM interaction. We show here that supervillin (SV), a peripheral membrane protein that binds F-actin and myosin II, reorganizes the actin cytoskeleton and potentiates invadopodial function. Overexpressed SV induces redistribution of lamellipodial cortactin and lamellipodin/RAPH1/PREL1 away from the cell periphery to internal sites and concomitantly increases the numbers of F-actin punctae. Most punctae are highly dynamic and colocalize with the podosome/invadopodial proteins, cortactin, Tks5, and cdc42. Cortactin binds SV sequences in vitro and contributes to the formation of enhanced green fluorescent protein (EGFP)-SV induced punctae. SV localizes to the cores of Src-generated podosomes in COS-7 cells and with invadopodia in MDA-MB-231 cells. EGFP-SV overexpression increases average numbers of ECM holes per cell; RNA interference-mediated knockdown of SV decreases these numbers. Although SV knockdown alone has no effect, simultaneous down-regulation of SV and the closely related protein gelsolin reduces invasion through ECM. Together, our results show that SV is a component of podosomes and invadopodia and that SV plays a role in invadopodial function, perhaps as a mediator of cortactin localization, activation state, and/or dynamics of metalloproteinases at the ventral cell surface.


Cytoskeleton | 2000

Mutant Rac1B expression in Dictyostelium: effects on morphology, growth, endocytosis, development, and the actin cytoskeleton

Stephen J. Palmieri; Thomas Nebl; Robert K. Pope; David J. Seastone; Eunkyung Lee; Edward H. Hinchcliffe; Greenfield Sluder; David A. Knecht; James A. Cardelli; Elizabeth J. Luna

Rac1 is a small G-protein in the Ras superfamily that has been implicated in the control of cell growth, adhesion, and the actin-based cytoskeleton. To investigate the role of Rac1 during motile processes, we have established Dictyostelium cell lines that conditionally overexpress epitope-tagged Dictyostelium discoideum wild-type Rac1B (DdRac1B) or a mutant DdRac1B protein. Expression of endogenous levels of myc- or GFP-tagged wild-type DdRac1B had minimal effect on cellular morphologies and behaviors. By contrast, expression of a constitutively active mutant (G12-->V or Q61-->L) or a dominant negative mutant (T17-->N) generated amoebae with characteristic cellular defects. The morphological appearance of actin-containing structures, intracellular levels of F-actin, and cellular responses to chemoattractant closely paralleled the amount of active DdRac1B, indicating a role in upregulating actin cytoskeletal activities. Expression of any of the three mutants inhibited cell growth and cytokinesis, and delayed multicellular development, suggesting that DdRac1B plays important regulatory role(s) during these processes. No significant effects were observed on binding or internalization of latex beads in suspension or on intracellular membrane trafficking. Cells expressing DdRac1B-G12V exhibited defects in fluid-phase endocytosis and the longest developmental delays; DdRac1B-Q61L produced the strongest cytokinesis defect; and DdRac1B-T17N generated intermediate phenotypes. These conditionally expressed DdRac1B proteins should facilitate the identification and characterization of the Rac1 signaling pathway in an organism that is amenable to both biochemical and molecular genetic manipulations.


Journal of Cell Science | 2007

Supervillin slows cell spreading by facilitating myosin II activation at the cell periphery

Norio Takizawa; Reiko Ikebe; Mitsuo Ikebe; Elizabeth J. Luna

During cell migration, myosin II modulates adhesion, cell protrusion and actin organization at the leading edge. We show that an F-actin- and membrane-associated scaffolding protein, called supervillin (SV, p205), binds directly to the subfragment 2 domains of nonmuscle myosin IIA and myosin IIB and to the N-terminus of the long form of myosin light chain kinase (L-MLCK). SV inhibits cell spreading via an MLCK- and myosin II-dependent mechanism. Overexpression of SV reduces the rate of cell spreading, and RNAi-mediated knockdown of endogenous SV increases it. Endogenous and EGFP-tagged SV colocalize with, and enhance the formation of, cortical bundles of F-actin and activated myosin II during early cell spreading. The effects of SV are reversed by inhibition of myosin heavy chain (MHC) ATPase (blebbistatin), MLCK (ML-7) or MEK (U0126), but not by inhibiting Rho-kinase with Y-27632. Flag-tagged L-MLCK co-localizes in cortical bundles with EGFP-SV, and kinase-dead L-MLCK disorganizes these bundles. The L-MLCK- and myosin-binding site in SV, SV1-171, rearranges and co-localizes with mono- and di-phosphorylated myosin light chain and with L-MLCK, but not with the short form of MLCK (S-MLCK) or with myosin phosphatase. Thus, the membrane protein SV apparently contributes to myosin II assembly during cell spreading by modulating myosin II regulation by L-MLCK.


Journal of Virology | 2003

Role of the Cytoplasmic Domain of the Newcastle Disease Virus Fusion Protein in Association with Lipid Rafts

V. Dolganiuc; Lori W. McGinnes; Elizabeth J. Luna; Trudy G. Morrison

ABSTRACT To explore the association of the Newcastle disease virus (NDV) fusion (F) protein with cholesterol-rich membrane domains, its localization in detergent-resistant membranes (DRMs) in transfected cells was characterized. After solubilization of cells expressing the F protein with 1% Triton X-100 at 4°C, ca. 40% of total, cell-associated F protein fractionated with classical DRMs with densities of 1.07 to l.14 as defined by flotation into sucrose density gradients. Association of the F protein with this cell fraction was unaffected by the cleavage of F0 to F1 and F2 or by coexpression of the NDV attachment protein, the hemagglutinin-neuraminidase protein (HN). Furthermore, elimination by mutation, of potential palmitate addition sites in and near the F-protein transmembrane domain had no effect on F-protein association with DRMs. Rather, specific deletions of the cytoplasmic domain of the F protein eliminated association with classical DRMs. Comparisons of deletions that affected fusion activity of the protein and deletions that affected DRM association suggested that there is no direct link between the cell-cell fusion activity of the F protein and DRM association. Furthermore, depletion of cholesterol from cells expressing F and HN protein, while eliminating DRM association, had no effect on the ability of these cells to fuse with avian red blood cells. These results suggest that specific localization of the F protein in cholesterol-rich membrane domains is not required for cell-to-cell fusion. Paramyxovirus F-protein cytoplasmic domains have been implicated in virus assembly. The results presented here raise the possibility that the cytoplasmic domain is important in virus assembly at least in part because it directs the protein to cholesterol-rich membrane domains.


Current Biology | 2000

Membrane cytoskeleton: PIP 2 pulls the strings

Thomas Nebl; Sang W. Oh; Elizabeth J. Luna

Abstract A recent application of optical tweezers has shown that plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP 2 ) levels control adhesion of the membrane bilayer to the underlying cytoskeleton, by regulated direct binding of PIP 2 to cytoskeletal proteins and/or indirect effects on cytoskeleton structure.


Cytoskeleton | 2010

Novel interactors and a role for supervillin in early cytokinesis

Tara C. Smith; Zhiyou Fang; Elizabeth J. Luna

Supervillin, the largest member of the villin/gelsolin/flightless family, is a peripheral membrane protein that regulates each step of cell motility, including cell spreading. Most known interactors bind within its amino (N)‐terminus. We show here that the supervillin carboxy (C)‐terminus can be modeled as supervillin‐specific loops extending from gelsolin‐like repeats plus a villin‐like headpiece. We have identified 27 new candidate interactors from yeast two‐hybrid screens. The interacting sequences from 12 of these proteins (BUB1, EPLIN/LIMA1, FLNA, HAX1, KIF14, KIFC3, MIF4GD/SLIP1, ODF2/Cenexin, RHAMM, STARD9/KIF16A, Tks5/SH3PXD2A, TNFAIP1) co‐localize with and mis‐localize EGFP‐supervillin in mammalian cells, suggesting associations in vivo. Supervillin‐interacting sequences within BUB1, FLNA, HAX1, and MIF4GD also mimic supervillin over‐expression by inhibiting cell spreading. Most new interactors have known roles in supervillin‐associated processes, e.g. cell motility, membrane trafficking, ERK signaling, and matrix invasion; three (KIF14, KIFC3, STARD9/KIF16A) have kinesin motor domains; and five (EPLIN, KIF14, BUB1, ODF2/cenexin, RHAMM) are important for cell division. GST fusions of the supervillin G2‐G3 or G4‐G6 repeats co‐sediment KIF14 and EPLIN, respectively, consistent with a direct association. Supervillin depletion leads to increased numbers of bi‐ and multi‐nucleated cells. Cytokinesis failure occurs predominately during early cytokinesis. Supervillin localizes with endogenous myosin II and EPLIN in the cleavage furrow, and overlaps with the oncogenic kinesin, KIF14, at the midbody. We conclude that supervillin, like its interactors, is important for efficient cytokinesis. Our results also suggest that supervillin and its interaction partners coordinate actin and microtubule motor functions throughout the cell cycle.

Collaboration


Dive into the Elizabeth J. Luna's collaboration.

Top Co-Authors

Avatar

Tara C. Smith

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Anne L. Hitt

Worcester Foundation for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Kersi N. Pestonjamasp

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Norio Takizawa

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Catherine P. Chia

Worcester Foundation for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Jessica Lynn Crowley

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert K. Pope

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Zhiyou Fang

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Thomas Nebl

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge