Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth J. Tran is active.

Publication


Featured researches published by Elizabeth J. Tran.


Genes & Development | 2011

The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1

Christine A. Hodge; Elizabeth J. Tran; Kristen N. Noble; Abel R. Alcázar-Román; Rakefet Ben-Yishay; John J. Scarcelli; Andrew W. Folkmann; Yaron Shav-Tal; Susan R. Wente; Charles N. Cole

Nuclear export of messenger RNA (mRNA) occurs by translocation of mRNA/protein complexes (mRNPs) through nuclear pore complexes (NPCs). The DEAD-box protein Dbp5 mediates export by triggering removal of mRNP proteins in a spatially controlled manner. This requires Dbp5 interaction with Nup159 in NPC cytoplasmic filaments and activation of Dbp5s ATPase activity by Gle1 bound to inositol hexakisphosphate (IP(6)). However, the precise sequence of events within this mechanism has not been fully defined. Here we analyze dbp5 mutants that alter ATP binding, ATP hydrolysis, or RNA binding. We found that ATP binding and hydrolysis are required for efficient Dbp5 association with NPCs. Interestingly, mutants defective for RNA binding are dominant-negative (DN) for mRNA export in yeast and human cells. We show that the DN phenotype stems from competition with wild-type Dbp5 for Gle1 at NPCs. The Dbp5-Gle1 interaction is limiting for export and, importantly, can be independent of Nup159. Fluorescence recovery after photobleaching experiments in yeast show a very dynamic association between Dbp5 and NPCs, averaging <1 sec, similar to reported NPC translocation rates for mRNPs. This work reveals critical steps in the Gle1-IP(6)/Dbp5/Nup159 cycle, and suggests that the number of remodeling events mediated by a single Dbp5 is limited.


Genes & Development | 2011

The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1

Kristen N. Noble; Elizabeth J. Tran; Abel R. Alcázar-Román; Christine A. Hodge; Charles N. Cole; Susan R. Wente

Essential messenger RNA (mRNA) export factors execute critical steps to mediate directional transport through nuclear pore complexes (NPCs). At cytoplasmic NPC filaments, the ATPase activity of DEAD-box protein Dbp5 is activated by inositol hexakisphosphate (IP(6))-bound Gle1 to mediate remodeling of mRNA-protein (mRNP) complexes. Whether a single Dbp5 executes multiple remodeling events and how Dbp5 is recycled are unknown. Evidence suggests that Dbp5 binding to Nup159 is required for controlling interactions with Gle1 and the mRNP. Using in vitro reconstitution assays, we found here that Nup159 is specifically required for ADP release from Dbp5. Moreover, Gle1-IP(6) stimulates ATP binding, thus priming Dbp5 for RNA loading. In vivo, a dbp5-R256D/R259D mutant with reduced ADP binding bypasses the need for Nup159 interaction. However, NPC spatial control is important, as a dbp5-R256D/R259D nup42Δ double mutant is temperature-sensitive for mRNA export. Further analysis reveals that remodeling requires a conformational shift to the Dbp5-ADP form. ADP release factors for DEAD-box proteins have not been reported previously and reflect a new paradigm for regulation. We propose a model wherein Nup159 and Gle1-IP(6) regulate Dbp5 cycles by controlling its nucleotide-bound state, allowing multiple cycles of mRNP remodeling by a single Dbp5 at the NPC.


Journal of Biological Chemistry | 2009

The C-terminal Tail of CRTH2 Is a Key Molecular Determinant That Constrains Gαi and Downstream Signaling Cascade Activation

Ralf Schröder; Nicole Merten; Jesper Mosolff Mathiesen; Lene Martini; Anamarija Kruljac-Letunic; Friederike Krop; Andree Blaukat; Ye Fang; Elizabeth J. Tran; Trond Ulven; Christel Drewke; Jennifer L. Whistler; Leonardo Pardo; Jesus Gomeza; Evi Kostenis

Prostaglandin D2 activation of the seven-transmembrane receptor CRTH2 regulates numerous cell functions that are important in inflammatory diseases, such as asthma. Despite its disease implication, no studies to date aimed at identifying receptor domains governing signaling and surface expression of human CRTH2. We tested the hypothesis that CRTH2 may take advantage of its C-tail to silence its own signaling and that this mechanism may explain the poor functional responses observed with CRTH2 in heterologous expression systems. Although the C terminus is a critical determinant for retention of CRTH2 at the plasma membrane, the presence of this domain confers a signaling-compromised conformation onto the receptor. Indeed, a mutant receptor lacking the major portion of its C-terminal tail displays paradoxically enhanced Gαi and ERK1/2 activation despite enhanced constitutive and agonist-mediated internalization. Enhanced activation of Gαi proteins and downstream signaling cascades is probably due to the inability of the tail-truncated receptor to recruit β-arrestin2 and undergo homologous desensitization. Unexpectedly, CRTH2 is not phosphorylated upon agonist-stimulation, a primary mechanism by which GPCR activity is regulated. Dynamic mass redistribution assays, which allow label-free monitoring of all major G protein pathways in real time, confirm that the C terminus inhibits Gαi signaling of CRTH2 but does not encode G protein specificity determinants. We propose that intrinsic CRTH2 inhibition by its C terminus may represent a rather unappreciated strategy employed by a GPCR to specify the extent of G protein activation and that this mechanism may compensate for the absence of the classical phosphorylation-dependent signal attenuation.


Journal of Biological Chemistry | 2012

The DEAD-box RNA Helicase Dbp2 Connects RNA Quality Control with Repression of Aberrant Transcription

Sara C. Cloutier; Wai Kit Ma; Luyen T. Nguyen; Elizabeth J. Tran

Background: Dbp2 is a member of the DEAD-box family of RNA helicases. Results: Dbp2 is a double-stranded RNA-specific ATPase required for repression of cryptic initiation and downstream RNA quality control. Conclusion: Dbp2 functions in transcriptional fidelity as a cotranscriptional RNA chaperone. Significance: Elucidation of key RNA enzymes is central to defining the mechanisms for eukaryotic gene regulation. DEAD-box proteins are a class of RNA-dependent ATP hydrolysis enzymes that rearrange RNA and RNA-protein (ribonucleoprotein) complexes. In an effort to characterize the cellular function of individual DEAD-box proteins, our laboratory has uncovered a previously unrecognized link between the DEAD-box protein Dbp2 and the regulation of transcription in Saccharomyces cerevisiae. Here, we report that Dbp2 is a double-stranded RNA-specific ATPase that associates directly with chromatin and is required for transcriptional fidelity. In fact, loss of DBP2 results in multiple gene expression defects, including accumulation of noncoding transcripts, inefficient 3′ end formation, and appearance of aberrant transcriptional initiation products. We also show that loss of DBP2 is synthetic lethal with deletion of the nuclear RNA decay factor, RRP6, pointing to a global role for Dbp2 in prevention of aberrant transcriptional products. Taken together, we present a model whereby Dbp2 functions to cotranscriptionally modulate RNA structure, a process that facilitates ribonucleoprotein assembly and clearance of transcripts from genomic loci. These studies suggest that Dbp2 is a missing link in RNA quality control that functions to maintain the fidelity of transcriptional processes.


PLOS Biology | 2013

Long Noncoding RNAs Promote Transcriptional Poising of Inducible Genes

Sara C. Cloutier; Siwen Wang; Wai Kit Ma; Christopher J. Petell; Elizabeth J. Tran

The GAL cluster-associated long non-coding RNAs (lncRNAs) promote rapid induction of GAL genes in budding yeast, thereby promoting a faster switch in transcriptional programs when needed.


Biochimica et Biophysica Acta | 2014

Macromolecular transport between the nucleus and the cytoplasm: Advances in mechanism and emerging links to disease.

Elizabeth J. Tran; Megan C. King; Anita H. Corbett

Transport of macromolecules between the cytoplasm and the nucleus is critical for the function of all eukaryotic cells. Large macromolecular channels termed nuclear pore complexes that span the nuclear envelope mediate the bidirectional transport of cargoes between the nucleus and cytoplasm. However, the influence of macromolecular trafficking extends past the nuclear pore complex to transcription and RNA processing within the nucleus and signaling pathways that reach into the cytoplasm and beyond. At the Mechanisms of Nuclear Transport biennial meeting held from October 18 to 23, 2013 in Woods Hole, MA, researchers in the field met to report on their recent findings. The work presented highlighted significant advances in understanding nucleocytoplasmic trafficking including how transport receptors and cargoes pass through the nuclear pore complex, the many signaling pathways that impinge on transport pathways, interplay between the nuclear envelope, nuclear pore complexes, and transport pathways, and numerous links between transport pathways and human disease. The goal of this review is to highlight newly emerging themes in nuclear transport and underscore the major questions that are likely to be the focus of future research in the field.


Molecular and Cellular Biology | 2010

The mitogen-activated protein kinase Slt2 regulates nuclear retention of non-heat shock mRNAs during heat shock-induced stress.

Sean R. Carmody; Elizabeth J. Tran; Luciano H. Apponi; Anita H. Corbett; Susan R. Wente

ABSTRACT Cellular adaptation to environmental stress conditions requires rapid and specific changes in gene expression. During heat shock, most polyadenylated mRNAs are retained in the nucleus, whereas the export of heat shock-induced mRNAs is allowed. Although essential mRNA export factors are known, the precise mechanism for regulating transport is not fully understood. Here we find that during heat shock in Saccharomyces cerevisiae, the mRNA-binding protein Nab2 is phosphorylated on threonine 178 and serine 180 by the mitogen-activated protein (MAP) kinase Slt2/Mpk1. Slt2 is required for nuclear poly(A+) mRNA accumulation upon heat shock, and thermotolerance is decreased in a nup42 nab2-T178A/S180A mutant. Coincident with phosphorylation, Nab2 and Yra1 colocalize in nuclear foci with Mlp1, a protein involved in mRNA retention. Nab2 nuclear focus formation and Nab2 phosphorylation are independent, suggesting that heat shock induces multiple cellular alterations that impinge upon transport efficiency. Under normal conditions, we find that the mRNA export receptor Mex67 and Nab2 directly interact. However, upon heat shock stress, Mex67 does not localize to the Mlp1 nuclear foci, and its association with Nab2 complexes is reduced. These results reveal a novel mechanism by which the MAP kinase Slt2 and Mlp1 control mRNA export factors during heat shock stress.


Journal of Molecular Biology | 2013

The DEAD-box Protein Dbp2 Functions with the RNA-Binding Protein Yra1 to Promote mRNP Assembly

Wai Kit Ma; Sara C. Cloutier; Elizabeth J. Tran

Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby messenger ribonucleoprotein (mRNP) assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes, suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus.


Journal of Biological Chemistry | 2010

Recognition of Polyadenosine RNA by the Zinc Finger Domain of Nuclear Poly(A) RNA-binding Protein 2 (Nab2) Is Required for Correct mRNA 3′-End Formation*

Seth M. Kelly; Luciano H. Apponi; Anna M. Bramley; Elizabeth J. Tran; Julia A. Chekanova; Susan R. Wente; Anita H. Corbett

Proteins bound to the poly(A) tail of mRNA transcripts, called poly(A)-binding proteins (Pabs), play critical roles in regulating RNA stability, translation, and nuclear export. Like many mRNA-binding proteins that modulate post-transcriptional processing events, assigning specific functions to Pabs is challenging because these processing events are tightly coupled to one another. To investigate the role that a novel class of zinc finger-containing Pabs plays in these coupled processes, we defined the mode of polyadenosine RNA recognition for the conserved Saccharomyces cerevisiae Nab2 protein and assessed in vivo consequences caused by disruption of RNA binding. The polyadenosine RNA recognition domain of Nab2 consists of three tandem Cys-Cys-Cys-His (CCCH) zinc fingers. Cells expressing mutant Nab2 proteins with decreased binding to polyadenosine RNA show growth defects as well as defects in poly(A) tail length but do not accumulate poly(A) RNA in the nucleus. We also demonstrate genetic interactions between mutant nab2 alleles and mutant alleles of the mRNA 3′-end processing machinery. Together, these data provide strong evidence that Nab2 binding to RNA is critical for proper control of poly(A) tail length.


Molecular Cell | 2016

Regulated Formation of lncRNA-DNA Hybrids Enables Faster Transcriptional Induction and Environmental Adaptation.

Sara C. Cloutier; Siwen Wang; Wai Kit Ma; Nadra Al Husini; Zuzer Dhoondia; Athar Ansari; Pete E. Pascuzzi; Elizabeth J. Tran

Long non-coding (lnc)RNAs, once thought to merely represent noise from imprecise transcription initiation, have now emerged as major regulatory entities in all eukaryotes. In contrast to the rapidly expanding identification of individual lncRNAs, mechanistic characterization has lagged behind. Here we provide evidence that the GAL lncRNAs in the budding yeast S. cerevisiae promote transcriptional induction in trans by formation of lncRNA-DNA hybrids or R-loops. The evolutionarily conserved RNA helicase Dbp2 regulates formation of these R-loops as genomic deletion or nuclear depletion results in accumulation of these structures across the GAL cluster gene promoters and coding regions. Enhanced transcriptional induction is manifested by lncRNA-dependent displacement of the Cyc8 co-repressor and subsequent gene looping, suggesting that these lncRNAs promote induction by altering chromatin architecture. Moreover, the GAL lncRNAs confer a competitive fitness advantage to yeast cells because expression of these non-coding molecules correlates with faster adaptation in response to an environmental switch.

Collaboration


Dive into the Elizabeth J. Tran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abel R. Alcázar-Román

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

E. Stuart Maxwell

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge