Elizabeth Jurrus
Scientific Computing and Imaging Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth Jurrus.
PLOS Biology | 2009
James R. Anderson; Bryan W. Jones; Jia-Hui Yang; Marguerite V. Shaw; Carl B. Watt; Pavel Koshevoy; Joel Spaltenstein; Elizabeth Jurrus; U.V. Kannan; Ross T. Whitaker; David N. Mastronarde; Tolga Tasdizen; Robert E. Marc
Circuitry mapping of metazoan neural systems is difficult because canonical neural regions (regions containing one or more copies of all components) are large, regional borders are uncertain, neuronal diversity is high, and potential network topologies so numerous that only anatomical ground truth can resolve them. Complete mapping of a specific network requires synaptic resolution, canonical region coverage, and robust neuronal classification. Though transmission electron microscopy (TEM) remains the optimal tool for network mapping, the process of building large serial section TEM (ssTEM) image volumes is rendered difficult by the need to precisely mosaic distorted image tiles and register distorted mosaics. Moreover, most molecular neuronal class markers are poorly compatible with optimal TEM imaging. Our objective was to build a complete framework for ultrastructural circuitry mapping. This framework combines strong TEM-compliant small molecule profiling with automated image tile mosaicking, automated slice-to-slice image registration, and gigabyte-scale image browsing for volume annotation. Specifically we show how ultrathin molecular profiling datasets and their resultant classification maps can be embedded into ssTEM datasets and how scripted acquisition tools (SerialEM), mosaicking and registration (ir-tools), and large slice viewers (MosaicBuilder, Viking) can be used to manage terabyte-scale volumes. These methods enable large-scale connectivity analyses of new and legacy data. In well-posed tasks (e.g., complete network mapping in retina), terabyte-scale image volumes that previously would require decades of assembly can now be completed in months. Perhaps more importantly, the fusion of molecular profiling, image acquisition by SerialEM, ir-tools volume assembly, and data viewers/annotators also allow ssTEM to be used as a prospective tool for discovery in nonneural systems and a practical screening methodology for neurogenetics. Finally, this framework provides a mechanism for parallelization of ssTEM imaging, volume assembly, and data analysis across an international user base, enhancing the productivity of a large cohort of electron microscopists.
Medical Image Analysis | 2009
Elizabeth Jurrus; Melissa Hardy; Tolga Tasdizen; P. Thomas Fletcher; Pavel Koshevoy; Chi-Bin Chien; Winfried Denk; Ross T. Whitaker
Electron microscopy is an important modality for the analysis of neuronal structures in neurobiology. We address the problem of tracking axons across large distances in volumes acquired by serial block-face scanning electron microscopy (SBFSEM). Tracking, for this application, is defined as the segmentation of an axon that spans a volume using similar features between slices. This is a challenging problem due to the small cross-sectional size of axons and the low signal-to-noise ratio in our SBFSEM images. A carefully engineered algorithm using Kalman-snakes and optical flow computation is presented. Axon tracking is initialized with user clicks or automatically using the watershed segmentation algorithm, which identifies axon centers. Multiple axons are tracked from slice to slice through a volume, updating the positions and velocities in the model and providing constraints to maintain smoothness between slices. Validation results indicate that this algorithm can significantly speed up the task of manual axon tracking.
Medical Image Analysis | 2010
Elizabeth Jurrus; António R. C. Paiva; Shigeki Watanabe; James R. Anderson; Bryan W. Jones; Ross T. Whitaker; Erik M. Jorgensen; Robert E. Marc; Tolga Tasdizen
Study of nervous systems via the connectome, the map of connectivities of all neurons in that system, is a challenging problem in neuroscience. Towards this goal, neurobiologists are acquiring large electron microscopy datasets. However, the shear volume of these datasets renders manual analysis infeasible. Hence, automated image analysis methods are required for reconstructing the connectome from these very large image collections. Segmentation of neurons in these images, an essential step of the reconstruction pipeline, is challenging because of noise, anisotropic shapes and brightness, and the presence of confounding structures. The method described in this paper uses a series of artificial neural networks (ANNs) in a framework combined with a feature vector that is composed of image intensities sampled over a stencil neighborhood. Several ANNs are applied in series allowing each ANN to use the classification context provided by the previous network to improve detection accuracy. We develop the method of serial ANNs and show that the learned context does improve detection over traditional ANNs. We also demonstrate advantages over previous membrane detection methods. The results are a significant step towards an automated system for the reconstruction of the connectome.
international symposium on biomedical imaging | 2008
Elizabeth Jurrus; Ross T. Whitaker; Bryan W. Jones; Robert E. Marc; Tolga Tasdizen
Neurobiologists are collecting large amounts of electron microscopy image data to gain a better understanding of neuron organization in the central nervous system. Image analysis plays an important role in extracting the connectivity present in these images; however, due to the large size of these datasets, manual analysis is essentially impractical. Automated analysis, however, is challenging because of the difficulty in reliably segmenting individual neurons in 3D. In this paper, we describe an automatic method for finding neurons in sequences of 2D sections. The proposed method formulates the problem of finding paths through sets of sections as an optimal path computation, which applies a cost function to the identification of a cell from one section to the next and solves this optimization problem using Dijkstras algorithm. This basic formulation allows us to account for variability or inconsistencies between sections and to prioritize cells based on the evidence of their connectivity.
Journal of Orthopaedic Research | 2013
Michael D. Harris; Manasi Datar; Ross T. Whitaker; Elizabeth Jurrus; Christopher L. Peters; Andrew E. Anderson
Statistical shape modeling (SSM) was used to quantify 3D variation and morphologic differences between femurs with and without cam femoroacetabular impingement (FAI). 3D surfaces were generated from CT scans of femurs from 41 controls and 30 cam FAI patients. SSM correspondence particles were optimally positioned on each surface using a gradient descent energy function. Mean shapes for groups were defined. Morphological differences between group mean shapes and between the control mean and individual patients were calculated. Principal component analysis described anatomical variation. Among all femurs, the first six modes (or principal components) captured significant variations, which comprised 84% of cumulative variation. The first two modes, which described trochanteric height and femoral neck width, were significantly different between groups. The mean cam femur shape protruded above the control mean by a maximum of 3.3 mm with sustained protrusions of 2.5–3.0 mm along the anterolateral head‐neck junction/distal anterior neck. SSM described variations in femoral morphology that corresponded well with areas prone to damage. Shape variation described by the first two modes may facilitate objective characterization of cam FAI deformities; variation beyond may be inherent population variance. SSM could characterize disease severity and guide surgical resection of bone.
medical image computing and computer assisted intervention | 2011
Mojtaba Seyedhosseini; Ritwik Kumar; Elizabeth Jurrus; Richard J. Giuly; Mark H. Ellisman; Hanspeter Pfister; Tolga Tasdizen
Automated neural circuit reconstruction through electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that exploits multi-scale contextual information together with Radon-like features (RLF) to learn a series of discriminative models. The main idea is to build a framework which is capable of extracting information about cell membranes from a large contextual area of an EM image in a computationally efficient way. Toward this goal, we extract RLF that can be computed efficiently from the input image and generate a scale-space representation of the context images that are obtained at the output of each discriminative model in the series. Compared to a single-scale model, the use of a multi-scale representation of the context image gives the subsequent classifiers access to a larger contextual area in an effective way. Our strategy is general and independent of the classifier and has the potential to be used in any context based framework. We demonstrate that our method outperforms the state-of-the-art algorithms in detection of neuron membranes in EM images.
international symposium on biomedical imaging | 2009
Kannan Umadevi Venkataraju; António R. C. Paiva; Elizabeth Jurrus; Tolga Tasdizen
To better understand the central nervous system, neurobiologists need to reconstruct the underlying neural circuitry from electron microscopy images. One of the necessary tasks is to segment the individual neurons. For this purpose, we propose a supervised learning approach to detect the cell membranes. The classifier was trained using AdaBoost, on local and context features. The features were selected to highlight the line characteristics of cell membranes. It is shown that using features from context positions allows for more information to be utilized in the classification. Together with the nonlinear discrimination ability of the AdaBoost classifier, this results in clearly noticeable improvements over previously used methods.
Neuroinformatics | 2013
Elizabeth Jurrus; Shigeki Watanabe; Richard J. Giuly; António R. C. Paiva; Mark H. Ellisman; Erik M. Jorgensen; Tolga Tasdizen
Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.
Journal of Orthopaedic Research | 2013
Kevin B. Jones; Manasi Datar; Sandhya Ravichandran; Huifeng Jin; Elizabeth Jurrus; Ross T. Whitaker; Mario R. Capecchi
Individuals with multiple osteochondromas (MO) demonstrate shortened long bones. Ext1 or Ext2 haploinsufficiency cannot recapitulate the phenotype in mice. Loss of heterozygosity for Ext1 may induce shortening by steal of longitudinal growth into osteochondromas or by a general derangement of physeal signaling. We induced osteochondromagenesis at different time points during skeletal growth in a mouse genetic model, then analyzed femora and tibiae at 12 weeks using micro‐CT and a point‐distribution‐based shape analysis. Bone lengths and volumes were compared. Metaphyseal volume deviations from normal, as a measure of phenotypic widening, were tested for correlation with length deviations. Mice with osteochondromas had shorter femora and tibiae than controls, more consistently when osteochondromagenesis was induced earlier during skeletal growth. Volumetric metaphyseal widening did not correlate with longitudinal shortening, although some of the most severe shortening was in bones with abundant osteochondromas. Loss of heterozygosity for Ext1 was sufficient to drive bone shortening in a mouse model of MO, but shortening did not correlate with osteochondroma volumetric growth. While a steal phenomenon seems apparent in individual cases, some other mechanism must also be capable of contributing to the short bone phenotype, independent of osteochondroma formation. Clones of chondrocytes lacking functional heparan sulfate must blunt physeal signaling generally, rather than stealing growth potential focally.
international conference on pattern recognition | 2010
António R. C. Paiva; Elizabeth Jurrus; Tolga Tasdizen
This paper proposes the sequential context inference (SCI) algorithm for Markov random field (MRF) image analysis. This algorithm is designed primarily for fast inference on an MRF model, but its application requires also a specific modeling architecture. The architecture is composed of a sequence of stages, each modeling the conditional probability of the labels, conditioned on a neighborhood of the input image and output of the previous stage. By learning the model at each stage sequentially with regards to the true output labels, the stages learn different models which can cope with errors in the previous stage.