Elizabeth K. Speliotes
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth K. Speliotes.
Science | 2007
Richa Saxena; Benjamin F. Voight; Valeriya Lyssenko; Noël P. Burtt; Paul I. W. de Bakker; Hong Chen; Jeffrey J. Roix; Sekar Kathiresan; Joel N. Hirschhorn; Mark J. Daly; Thomas Edward Hughes; Leif Groop; David Altshuler; Peter Almgren; Jose C. Florez; Joanne M. Meyer; Kristin Ardlie; Kristina Bengtsson Boström; Bo Isomaa; Guillaume Lettre; Ulf Lindblad; Helen N. Lyon; Olle Melander; Christopher Newton-Cheh; Peter Nilsson; Marju Orho-Melander; Lennart Råstam; Elizabeth K. Speliotes; Marja-Riitta Taskinen; Tiinamaija Tuomi
New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D—in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1—and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.
The New England Journal of Medicine | 2014
Jacy R. Crosby; Gina M. Peloso; Paul L. Auer; David R. Crosslin; Nathan O. Stitziel; Leslie A. Lange; Yingchang Lu; Zheng-zheng Tang; He Zhang; George Hindy; Nicholas G. D. Masca; Kathleen Stirrups; Stavroula Kanoni; Ron Do; Goo Jun; Youna Hu; Hyun Min Kang; Chenyi Xue; Anuj Goel; Martin Farrall; Stefano Duga; Pier Angelica Merlini; Rosanna Asselta; Domenico Girelli; Nicola Martinelli; Wu Yin; Dermot F. Reilly; Elizabeth K. Speliotes; Caroline S. Fox; Kristian Hveem
BACKGROUND Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. METHODS We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. RESULTS An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). CONCLUSIONS Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).
PLOS Genetics | 2012
Benjamin F. Voight; Hyun Min Kang; Jinhui Ding; C. Palmer; Carlo Sidore; Peter S. Chines; N. P. Burtt; Christian Fuchsberger; Yanming Li; J. Erdmann; Timothy M. Frayling; Iris M. Heid; Anne U. Jackson; Toby Johnson; Tuomas O. Kilpeläinen; Cecilia M. Lindgren; Andrew P. Morris; Inga Prokopenko; Joshua C. Randall; Richa Saxena; Nicole Soranzo; Elizabeth K. Speliotes; Tanya M. Teslovich; Eleanor Wheeler; Jared Maguire; Melissa Parkin; Simon Potter; Nigel W. Rayner; Neil R. Robertson; Kathy Stirrups
Genome-wide association studies have identified hundreds of loci for type 2 diabetes, coronary artery disease and myocardial infarction, as well as for related traits such as body mass index, glucose and insulin levels, lipid levels, and blood pressure. These studies also have pointed to thousands of loci with promising but not yet compelling association evidence. To establish association at additional loci and to characterize the genome-wide significant loci by fine-mapping, we designed the “Metabochip,” a custom genotyping array that assays nearly 200,000 SNP markers. Here, we describe the Metabochip and its component SNP sets, evaluate its performance in capturing variation across the allele-frequency spectrum, describe solutions to methodological challenges commonly encountered in its analysis, and evaluate its performance as a platform for genotype imputation. The metabochip achieves dramatic cost efficiencies compared to designing single-trait follow-up reagents, and provides the opportunity to compare results across a range of related traits. The metabochip and similar custom genotyping arrays offer a powerful and cost-effective approach to follow-up large-scale genotyping and sequencing studies and advance our understanding of the genetic basis of complex human diseases and traits.
PLOS Genetics | 2013
Ching-Ti Liu; Keri L. Monda; Kira C. Taylor; Leslie A. Lange; Ellen W. Demerath; Walter Palmas; Mary K. Wojczynski; Jaclyn C. Ellis; Mara Z. Vitolins; Simin Liu; George J. Papanicolaou; Marguerite R. Irvin; Luting Xue; Paula J. Griffin; Michael A. Nalls; Adebowale Adeyemo; Jiankang Liu; Guo Li; Edward A. Ruiz-Narváez; Wei-Min Chen; Fang Chen; Brian E. Henderson; Robert C. Millikan; Christine B. Ambrosone; Sara S. Strom; Xiuqing Guo; Jeanette S. Andrews; Yan V. Sun; Thomas H. Mosley; Lisa R. Yanek
Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.
Diabetes | 2014
Hanieh Yaghootkar; Robert A. Scott; Charles C. White; Weihua Zhang; Elizabeth K. Speliotes; Patricia B. Munroe; Georg B. Ehret; Joshua C. Bis; Caroline S. Fox; M. Walker; Ingrid B. Borecki; Joshua W. Knowles; Laura M. Yerges-Armstrong; Claes Ohlsson; John Perry; John Chambers; Jaspal S. Kooner; Nora Franceschini; Claudia Langenberg; Marie-France Hivert; Zari Dastani; J. Brent Richards; Robert K. Semple; Timothy M. Frayling
The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy—a reduction in subcutaneous adipose tissue—it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin–based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10−29), lower HDL cholesterol (β = −0.020; P = 7 × 10−37), greater hepatic steatosis (β = 0.021; P = 3 × 10−4), higher alanine transaminase (β = 0.002; P = 3 × 10−5), lower sex-hormone-binding globulin (β = −0.010; P = 9 × 10−13), and lower adiponectin (β = −0.015; P = 2 × 10−26). The same risk alleles were associated with lower BMI (per-allele β = −0.008; P = 7 × 10−8) and increased visceral-to-subcutaneous adipose tissue ratio (β = −0.015; P = 6 × 10−7). Individuals carrying ≥17 fasting insulin–raising alleles (5.5% population) were slimmer (0.30 kg/m2) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10−13), CAD (OR 1.12; per-allele P = 1 × 10−5), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10−5] and 0.67 mmHg [per-allele P = 2 × 10−4], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the “metabolic syndrome” and point to reduced subcutaneous adiposity as a central mechanism.
Nature Genetics | 2015
Matthew R. Robinson; Gibran Hemani; Carolina Medina-Gomez; Massimo Mezzavilla; Tonu Esko; Konstantin Shakhbazov; Joseph E. Powell; Anna A. E. Vinkhuyzen; Sonja I. Berndt; Stefan Gustafsson; Anne E. Justice; Bratati Kahali; Adam E. Locke; Tune H. Pers; Sailaja Vedantam; Andrew R. Wood; Wouter van Rheenen; Ole A. Andreassen; Paolo Gasparini; Andres Metspalu; Leonard H. van den Berg; Jan H. Veldink; Fernando Rivadeneira; Thomas Werge; Gonçalo R. Abecasis; Dorret I. Boomsma; Daniel I. Chasman; Eco J. C. de Geus; Timothy M. Frayling; Joel N. Hirschhorn
Across-nation differences in the mean values for complex traits are common, but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 × 10−8; BMI, P < 5.95 × 10−4), and we find an among-population genetic correlation for tall and slender individuals (r = −0.80, 95% CI = −0.95, −0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).
Journal of Hepatology | 2015
Jessica L. Mellinger; Karol M. Pencina; Joseph M. Massaro; Udo Hoffmann; Sudha Seshadri; Caroline S. Fox; Christopher J. O’Donnell; Elizabeth K. Speliotes
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and is associated with development of metabolic disease including atherosclerotic cardiovascular disease (CVD). Our aim is to examine the association of hepatic steatosis with prevalent clinical and subclinical CVD outcomes in a large community-based sample, the Framingham Heart Study. METHODS Hepatic steatosis was measured in 3529 participants using multidetector computed tomography scanning. Multivariable logistic regression was used to determine whether hepatic steatosis is associated with prevalent CVD adjusted for covariates. We also tested whether associations were independent of other metabolic diseases/traits. The primary clinical outcome was composite prevalent clinical CVD defined by prior non-fatal myocardial infarction, stroke, transient ischemic attack, heart failure, or peripheral arterial disease. Subclinical cardiovascular outcomes were coronary artery calcium (CAC) and abdominal artery calcium (AAC). RESULTS 3014 participants were included (50.5% women). There was a non-significant association of hepatic steatosis with clinical CVD (OR 1.14 [p=0.07]). Hepatic steatosis was associated with both CAC and AAC (OR 1.20 [p<0.001] and OR 1.16 [p<0.001], respectively). Associations persisted for CAC even when controlling for other risk factors/metabolic diseases, but for AAC, the associations became non-significant after adjustment for visceral adipose tissue. The association between hepatic steatosis and AAC was stronger in men than in women (p sex interaction=0.022). CONCLUSION There was a significant association of hepatic steatosis with subclinical CVD outcomes independent of many metabolic diseases/traits with a trend towards association between hepatic steatosis and clinical CVD outcomes. The association with AAC was stronger in men than in women.
Journal of Hepatology | 2015
Jiantao Ma; Caroline S. Fox; Paul F. Jacques; Elizabeth K. Speliotes; Udo Hoffmann; Caren E. Smith; Edward Saltzman; Nicola M. McKeown
BACKGROUND & AIMS Non-alcoholic fatty liver disease affects ∼30% of US adults, yet the role of sugar-sweetened beverages and diet soda on these diseases remains unknown. We examined the cross-sectional association between intake of sugar-sweetened beverages or diet soda and fatty liver disease in participants of the Framingham Offspring and Third Generation cohorts. METHODS Fatty liver disease was defined using liver attenuation measurements generated from computed tomography in 2634 participants. Alanine transaminase concentration, a crude marker of fatty liver disease, was measured in 5908 participants. Sugar-sweetened beverage and diet soda intake were estimated using a food frequency questionnaire. Participants were categorized as either non-consumers or consumers (3 categories: 1 serving/month to <1 serving/week, 1 serving/week to <1 serving/day, and ⩾1 serving/day) of sugar-sweetened beverages or diet soda. RESULTS After adjustment for age, sex, smoking status, Framingham cohort, energy intake, alcohol, dietary fiber, fat (% energy), protein (% energy), diet soda intake, and body mass index, the odds ratios of fatty liver disease were 1, 1.16 (0.88, 1.54), 1.32 (0.93, 1.86), and 1.61 (1.04, 2.49) across sugar-sweetened beverage consumption categories (p trend=0.04). Sugar-sweetened beverage consumption was also positively associated with alanine transaminase levels (p trend=0.007). We observed no significant association between diet soda intake and measures of fatty liver disease. CONCLUSION In conclusion, we observed that regular sugar-sweetened beverage consumption was associated with greater risk of fatty liver disease, particularly in overweight and obese individuals, whereas diet soda intake was not associated with measures of fatty liver disease.
Human Heredity | 2013
Alexis Gorden; Rongze Yang; Laura M. Yerges-Armstrong; Kathy A. Ryan; Elizabeth K. Speliotes; Ingrid B. Borecki; Tamara B. Harris; Xin Chu; G.C. Wood; C.D. Still; Alan R. Shuldiner; Glenn S. Gerhard
Objective: Obesity-associated non-alcoholic fatty liver disease (NAFLD) may cause liver dysfunction and failure. In a previously reported genome-wide association meta-analysis, single nucleotide polymorphisms (SNPs) near PNPLA3, NCAN, GCKR, LYPLAL1 and PPP1R3B were associated with NAFLD and with distinctive serum lipid profiles. The present study examined the relevance of these variants to NAFLD in extreme obesity. Methods: In 1,092 bariatric surgery patients, the candidate SNPs were genotyped and association analyses with liver histology and serum lipids were performed. Results: We replicated the association of hepatosteatosis with PNPLA3 rs738409[G] and with NCAN rs2228603[T]. We also replicated the association of rs2228603[T] with hepatic inflammation and fibrosis. rs2228603[T] was associated with lower serum low-density lipoprotein, total cholesterol and triglycerides. After stratification by the presence or absence of NAFLD, these associations were present predominantly in the subgroup with NAFLD. Conclusion:NCAN rs2228603[T] is a risk factor for liver inflammation and fibrosis, suggesting that this locus is responsible for progression from steatosis to steatohepatitis. In this bariatric cohort, rs2228603[T] was associated with low serum lipids only in patients with NAFLD. This supports a NAFLD model in which the liver may sequester triglycerides as a result of either increased triglyceride uptake and/or decreased lipolysis.
Hepatology | 2013
Nicholette D. Palmer; Solomon K. Musani; Laura M. Yerges-Armstrong; Mary F. Feitosa; Lawrence F. Bielak; Ruben Hernaez; Bratati Kahali; J. Jeffrey Carr; Tamara B. Harris; Min A. Jhun; Sharon L.R. Kardia; Carl D. Langefeld; Thomas H. Mosley; Jill M. Norris; Albert V. Smith; Herman A. Taylor; Lynne E. Wagenknecht; Jiankang Liu; Ingrid B. Borecki; Patricia A. Peyser; Elizabeth K. Speliotes
Nonalcoholic fatty liver disease (NAFLD) is an obesity‐related condition affecting over 50% of individuals in some populations and is expected to become the number one cause of liver disease worldwide by 2020. Common, robustly associated genetic variants in/near five genes were identified for hepatic steatosis, a quantifiable component of NAFLD, in European ancestry individuals. Here we tested whether these variants were associated with hepatic steatosis in African‐ and/or Hispanic‐Americans and fine‐mapped the observed association signals. We measured hepatic steatosis using computed tomography in five African American (n = 3,124) and one Hispanic American (n = 849) cohorts. All analyses controlled for variation in age, age2, gender, alcoholic drinks, and population substructure. Heritability of hepatic steatosis was estimated in three cohorts. Variants in/near PNPLA3, NCAN, LYPLAL1, GCKR, and PPP1R3B were tested for association with hepatic steatosis using a regression framework in each cohort and meta‐analyzed. Fine‐mapping across African American cohorts was conducted using meta‐analysis. African‐ and Hispanic‐American cohorts were 33.9/37.5% male, with average age of 58.6/42.6 years and body mass index of 31.8/28.9 kg/m2, respectively. Hepatic steatosis was 0.20‐0.34 heritable in African‐ and Hispanic‐American families (P < 0.02 in each cohort). Variants in or near PNPLA3, NCAN, GCKR, PPP1R3B in African Americans and PNPLA3 and PPP1R3B in Hispanic Americans were significantly associated with hepatic steatosis; however, allele frequency and effect size varied across ancestries. Fine‐mapping in African Americans highlighted missense variants at PNPLA3 and GCKR and redefined the association region at LYPLAL1. Conclusion: Multiple genetic variants are associated with hepatic steatosis across ancestries. This explains a substantial proportion of the genetic predisposition in African‐ and Hispanic‐Americans. Missense variants in PNPLA3 and GCKR are likely functional across multiple ancestries. (Hepatology 2013;53:966–975)