Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth L. Buza is active.

Publication


Featured researches published by Elizabeth L. Buza.


Cancer Research | 2015

Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells

Albert C. Lo; Liang-Chuan S. Wang; John Scholler; James Monslow; Diana Avery; Kheng Newick; Shaun O'Brien; Rebecca A. Evans; David J. Bajor; Cynthia Clendenin; Amy C. Durham; Elizabeth L. Buza; Robert H. Vonderheide; Carl H. June; Steven M. Albelda; Ellen Puré

Malignant cells drive the generation of a desmoplastic and immunosuppressive tumor microenvironment. Cancer-associated stromal cells (CASC) are a heterogeneous population that provides both negative and positive signals for tumor cell growth and metastasis. Fibroblast activation protein (FAP) is a marker of a major subset of CASCs in virtually all carcinomas. Clinically, FAP expression serves as an independent negative prognostic factor for multiple types of human malignancies. Prior studies established that depletion of FAP(+) cells inhibits tumor growth by augmenting antitumor immunity. However, the potential for immune-independent effects on tumor growth have not been defined. Herein, we demonstrate that FAP(+) CASCs are required for maintenance of the provisional tumor stroma because depletion of these cells, by adoptive transfer of FAP-targeted chimeric antigen receptor (CAR) T cells, reduced extracellular matrix proteins and glycosaminoglycans. Adoptive transfer of FAP-CAR T cells also decreased tumor vascular density and restrained growth of desmoplastic human lung cancer xenografts and syngeneic murine pancreatic cancers in an immune-independent fashion. Adoptive transfer of FAP-CAR T cells also restrained autochthonous pancreatic cancer growth. These data distinguish the function of FAP(+) CASCs from other CASC subsets and provide support for further development of FAP(+) stromal cell-targeted therapies for the treatment of solid tumors.


Hepatology | 2016

Genetic lineage tracing analysis of the cell of origin of hepatotoxin‐induced liver tumors in mice

Soona Shin; Kirk J. Wangensteen; Monica Teta‐Bissett; Yue J. Wang; Elham Mosleh‐Shirazi; Elizabeth L. Buza; Linda E. Greenbaum; Klaus H. Kaestner

The expression of biliary/progenitor markers by hepatocellular carcinoma (HCC) is often associated with poor prognosis and stem cell‐like behaviors of tumor cells. Hepatocellular adenomas (HCAs) also often express biliary/progenitor markers and frequently act as precursor lesions for HCC. However, the cell of origin of HCA and HCC that expresses these markers remains unclear. Therefore, to evaluate if mature hepatocytes give rise to HCA and HCC tumors and to understand the molecular pathways involved in tumorigenesis, we lineage‐labeled hepatocytes by injecting adeno‐associated virus containing thyroxine‐binding globulin promoter‐driven causes recombination (AAV‐TBG‐Cre) into RosaYFP mice. Yellow fluorescent protein (YFP) was present in >96% of hepatocytes before exposure to carcinogens. We treated AAV‐TBG‐Cre; RosaYFP mice with diethylnitrosamine (DEN), followed by multiple injections of carbon tetrachloride to induce carcinogenesis and fibrosis and found that HCA and HCC nodules were YFP+ lineage‐labeled; positive for osteopontin, SRY (sex determining region Y)‐box 9, and epithelial cell adhesion molecule; and enriched for transcripts of biliary/progenitor markers such as prominin 1, Cd44, and delta‐like 1 homolog. Next, we performed the converse experiment and lineage‐labeled forkhead box protein L1(Foxl1)‐positive hepatic progenitor cells simultaneously with exposure to carcinogens. None of the tumor nodules expressed YFP, indicating that Foxl1‐expressing cells are not the origin for hepatotoxin‐induced liver tumors. We confirmed that HCA and HCC cells are derived from mature hepatocytes and not from Foxl1‐Cre‐marked cells in a second model of toxin‐induced hepatic neoplasia, using DEN and 3,3′,5,5′‐tetrachloro‐1,4‐bis(pyridyloxy)benzene (TCPOBOP). Conclusion: Hepatocytes are the cell of origin of HCA and HCC in DEN/carbon tetrachloride and DEN/TCPOBOP induced liver tumors. (Hepatology 2016;64:1163‐1177)


Veterinary Radiology & Ultrasound | 2012

CT FEATURES OF PLEURAL MASSES AND NODULES

Jennifer A. Reetz; Elizabeth L. Buza; Erika L. Krick

Pleural space masses and nodules are rarely described on computed tomography (CT) in veterinary medicine and have only been described in patients with neoplasia. Our purpose was to describe the CT findings and diagnoses in seven patients with pleural masses and nodules. Two patients had broad-based, plaque-like pleural masses, both of which were due to neoplasia (primary pleural carcinoma, metastatic thymoma). Two patients had well-defined pleural nodules and nodular pleural thickening, one of which had mesothelial hypertrophy, and another of which had metastatic hemangiosarcoma. Three patients had ill-defined pleural nodules to nodular pleural thickening, one of which had metastatic pulmonary carcinoma, while the other two had bacterial infection with mesothelial proliferation (n = 2), fibrinous pleuritis (n = 1), and severe mediastinal pleuritis/mediastinitis (n = 2). Five of the seven patients had focal, multifocal or diffuse smooth, and/or irregular pleural thickening. Five of seven patients had pleural effusion, and postcontrast CT was useful in several patients for delineating the pleural lesions from the effusion. All patients except one had additional lesions identified on CT besides those in the pleural space. CT is useful in identifying and characterizing pleural space lesions and could be used to guide further diagnostic procedures such as thoracoscopy or exploratory thoracotomy. Both neoplastic and nonneoplastic diseases should be considered in the differential diagnoses for pleural space masses and nodules found on CT.


Cancer Research | 2017

Systematic In Vivo Inactivation of Chromatin-Regulating Enzymes Identifies Setd2 as a Potent Tumor Suppressor in Lung Adenocarcinoma

David Walter; Olivia S. Venancio; Elizabeth L. Buza; John W. Tobias; Charuhas Deshpande; A. Andrea Gudiel; Caroline Kim-Kiselak; Michelle Cicchini; Travis Yates; David M. Feldser

Chromatin-modifying genes are frequently mutated in human lung adenocarcinoma, but the functional impact of these mutations on disease initiation and progression is not well understood. Using a CRISPR-based approach, we systematically inactivated three of the most commonly mutated chromatin regulatory genes in two KrasG12D-driven mouse models of lung adenocarcinoma to characterize the impact of their loss. Targeted inactivation of SWI/SNF nucleosome-remodeling complex members Smarca4 (Brg1) or Arid1a had complex effects on lung adenocarcinoma initiation and progression. Loss of either Brg1 or Arid1a were selected against in early-stage tumors, but Brg1 loss continued to limit disease progression over time, whereas loss of Arid1a eventually promoted development of higher grade lesions. In contrast to these stage-specific effects, loss of the histone methyltransferase Setd2 had robust tumor-promoting consequences. Despite disparate impacts of Setd2 and Arid1a loss on tumor development, each resulted in a gene expression profile with significant overlap. Setd2 inactivation and subsequent loss of H3K36me3 led to the swift expansion and accelerated progression of both early- and late-stage tumors. However, Setd2 loss per se was insufficient to overcome a p53-regulated barrier to malignant progression, nor establish the prometastatic cellular states that stochastically evolve during lung adenocarcinoma progression. Our study uncovers differential and context-dependent effects of SWI/SNF complex member loss, identifies Setd2 as a potent tumor suppressor in lung adenocarcinoma, and establishes model systems to facilitate further study of chromatin deregulation in lung cancer. Cancer Res; 77(7); 1719-29. ©2017 AACR.


PLOS ONE | 2015

The Group 3 Innate Lymphoid Cell Defect in Aryl Hydrocarbon Receptor Deficient Mice Is Associated with T Cell Hyperactivation during Intestinal Infection

Sagie Wagage; Gretchen Harms Pritchard; Lucas Dawson; Elizabeth L. Buza; Gregory F. Sonnenberg; Christopher A. Hunter

Intestinal infection with the intracellular parasite Toxoplasma gondii results in the translocation of commensal bacteria to peripheral organs and the development of a T cell response specific to the microbiota. In naïve mice, the recently described RORγt+ group 3 innate lymphoid cell (ILC) population plays a critical role in promoting intestinal barrier function and limiting responses to gut-resident commensal bacteria. Given this role for group 3 ILCs, studies were performed to evaluate whether these cells might influence the immune response to mucosal infection with T. gondii. Phenotypic characterization of RORγt+ ILCs in T. gondii infected mice revealed that this population decreased following challenge but the population that remained expressed costimulatory molecules and IL-22. One factor that influences the maintenance of RORγt+ ILCs is the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, and Ahr-/- mice have a marked defect in the lamina propria group 3 ILC population. When Ahr-/- mice were challenged with T. gondii, they lost more weight than wild type controls. This disease course in Ahr-/- animals was associated with increased T cell responses to Toxoplasma antigen and crude commensal antigen preparations. Together, these data suggest that group 3 ILCs have a role in limiting T cell activation during intestinal infection.


Human Gene Therapy | 2018

Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN

Christian Hinderer; Nathan Katz; Elizabeth L. Buza; Cecilia Dyer; Tamara Goode; Peter Bell; Laura K. Richman; James M. Wilson

Neurotropic adeno-associated virus (AAV) serotypes such as AAV9 have been demonstrated to transduce spinal alpha motor neurons when administered intravenously (i.v.) at high doses. This observation led to the recent successful application of i.v. AAV9 delivery to treat infants with spinal muscular atrophy, an inherited deficiency of the survival of motor neuron (SMN) protein characterized by selective death of lower motor neurons. To evaluate the efficiency of motor neuron transduction with an AAV9 variant (AAVhu68) using this approach, three juvenile nonhuman primates (NHPs; aged 14 months) and three piglets (aged 7-30 days) were treated with an i.v. injection of an AAVhu68 vector carrying a human SMN transgene at a dose similar to that employed in the spinal muscular atrophy clinical trial. Administration of 2 × 1014 genome copies per kilogram of body weight resulted in widespread transduction of spinal motor neurons in both species. However, severe toxicity occurred in both NHPs and piglets. All three NHPs exhibited marked transaminase elevations. In two NHPs, the transaminase elevations resolved without clinical sequelae, while one NHP developed acute liver failure and shock and was euthanized 4 days after vector injection. Degeneration of dorsal root ganglia sensory neurons was also observed, although NHPs exhibited no clinically apparent sensory deficits. There was no correlation between clinical findings and T-cell responses to the vector capsid or transgene product in NHPs. Piglets demonstrated no evidence of hepatic toxicity, but within 14 days of vector injection, all three animals exhibited proprioceptive deficits and ataxia, which profoundly impaired ambulation and necessitated euthanasia. These clinical findings correlated with more severe dorsal root ganglia sensory neuron lesions than those observed in NHPs. The liver and sensory neuron findings appear to be a direct consequence of AAV transduction independent of an immune response to the capsid or transgene product. The present results and those of another recent study utilizing a different AAV9 variant and transgene indicate that systemic and sensory neuron toxicity may be general properties of i.v. delivery of AAV vectors at high doses, irrespective of the capsid serotype or transgene. Preclinical and clinical studies involving high systemic doses of AAV vectors should include careful monitoring for similar toxicities.


Molecular Therapy | 2016

Tumor Regression and Delayed Onset Toxicity Following B7-H4 CAR T Cell Therapy.

Jenessa B. Smith; Evripidis Lanitis; Denarda Dangaj; Elizabeth L. Buza; Mathilde Poussin; Caitlin Stashwick; Nathalie Scholler; Daniel J. Powell

B7-H4 protein is frequently overexpressed in ovarian cancer. Here, we engineered T cells with novel B7-H4-specific chimeric antigen receptors (CARs) that recognized both human and murine B7-H4 to test the hypothesis that B7-H4 CAR T cell therapy can be applied safely in preclinical models. B7-H4 CAR T cells specifically secreted IFN-γ and lysed B7-H4(+) targets. In vivo, B7-H4 CAR T cells displayed antitumor reactivity against B7-H4(+) human ovarian tumor xenografts. Unexpectedly, B7-H4 CAR T cell treatment reproducibly showed delayed, lethal toxicity 6-8 weeks after therapy. Comprehensive assessment of murine B7-H4 protein distribution uncovered expression in ductal and mucosal epithelial cells in normal tissues. Postmortem analysis revealed the presence of widespread histologic lesions that correlated with B7-H4(+) expression, and were inconsistent with graft versus host disease. Lastly, expression patterns of B7-H4 protein in normal human tissue were comparable to distribution in mice, advancing our understanding of B7-H4. We conclude that B7-H4 CAR therapy mediates control of cancer outgrowth. However, long-term engraftment of B7-H4 CAR T cells mediates lethal, off-tumor toxicity that is likely due to wide expression of B7-H4 in healthy mouse organs. This model system provides a unique opportunity for preclinical evaluation of safety approaches that limit CAR-mediated toxicity after tumor destruction in vivo.


Cellular and molecular gastroenterology and hepatology | 2015

Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in Mice.

Mark J. Ferreira; Lindsay B. McKenna; Jia Zhang; Maximilian Reichert; Basil Bakir; Elizabeth L. Buza; Emma E. Furth; Clifford W. Bogue; Anil K. Rustgi; Klaus H. Kaestner

Background & Aims Perturbations in pancreatic ductal bicarbonate secretion cause chronic pancreatitis. The physiologic mechanism of ductal secretion is known, but its transcriptional control is not. We determine the role of the transcription factor hematopoietically expressed homeobox protein (Hhex) in ductal secretion and pancreatitis. Methods We derived mice with pancreas-specific, Cre-mediated Hhex gene ablation to determine the requirement of Hhex in the pancreatic duct in early life and in adult stages. Histologic and immunostaining analyses were used to detect the presence of pathology. Pancreatic primary ductal cells were isolated to discover differentially expressed transcripts upon acute Hhex ablation on a cell autonomous level. Results Hhex protein was detected throughout the embryonic and adult ductal trees. Ablation of Hhex in pancreatic progenitors resulted in postnatal ductal ectasia associated with acinar-to-ductal metaplasia, a progressive phenotype that ultimately resulted in chronic pancreatitis. Hhex ablation in adult mice, however, did not cause any detectable pathology. Ductal ectasia in young mice did not result from perturbation of expression of Hnf6, Hnf1β, or the primary cilia genes. RNA-seq analysis of Hhex-ablated pancreatic primary ductal cells showed mRNA levels of the G-protein coupled receptor natriuretic peptide receptor 3 (Npr3), implicated in paracrine signaling, up-regulated by 4.70-fold. Conclusions Although Hhex is dispensable for ductal cell function in the adult, ablation of Hhex in pancreatic progenitors results in pancreatitis. Our data highlight the critical role of Hhex in maintaining ductal homeostasis in early life and support ductal hypersecretion as a novel etiology of pediatric chronic pancreatitis.


PLOS Pathogens | 2017

IL-27 Limits Type 2 Immunopathology Following Parainfluenza Virus Infection

Gaia Muallem; Sagie Wagage; Yan Sun; Jonathan H. DeLong; Alex Valenzuela; David A. Christian; Gretchen Harms Pritchard; Qun Fang; Elizabeth L. Buza; Deepika Jain; M. Merle Elloso; Carolina B. López; Christopher A. Hunter

Respiratory paramyxoviruses are important causes of morbidity and mortality, particularly of infants and the elderly. In humans, a T helper (Th)2-biased immune response to these infections is associated with increased disease severity; however, little is known about the endogenous regulators of these responses that may be manipulated to ameliorate pathology. IL-27, a cytokine that regulates Th2 responses, is produced in the lungs during parainfluenza infection, but its role in disease pathogenesis is unknown. To determine whether IL-27 limits the development of pathogenic Th2 responses during paramyxovirus infection, IL-27-deficient or control mice were infected with the murine parainfluenza virus Sendai virus (SeV). Infected IL-27-deficient mice experienced increased weight loss, more severe lung lesions, and decreased survival compared to controls. IL-27 deficiency led to increased pulmonary eosinophils, alternatively activated macrophages (AAMs), and the emergence of Th2 responses. In control mice, IL-27 induced a population of IFN-γ+/IL-10+ CD4+ T cells that was replaced by IFN-γ+/IL-17+ and IFN-γ+/IL-13+ CD4+ T cells in IL-27-deficient mice. CD4+ T cell depletion in IL-27-deficient mice attenuated weight loss and decreased AAMs. Elimination of STAT6 signaling in IL-27-deficient mice reduced Th2 responses and decreased disease severity. These data indicate that endogenous IL-27 limits pathology during parainfluenza virus infection by regulating the quality of CD4+ T cell responses and therefore may have therapeutic potential in paramyxovirus infections.


PLOS ONE | 2017

Identification of prognostic collagen signatures and potential therapeutic stromal targets in canine mammary gland carcinoma

Ashley Case; Becky K. Brisson; Amy C. Durham; Suzanne Rosen; James Monslow; Elizabeth L. Buza; Pascale Salah; Julie Marie Gillem; Gordon Ruthel; Sridhar Veluvolu; Veronica Kristiansen; Ellen Puré; Dorothy Cimino Brown; Karin U. Sorenmo; Susan W. Volk

Increasing evidence indicates that the tumor microenvironment plays a critical role in regulating the biologic behavior of breast cancer. In veterinary oncology, there is a need for improved prognostic markers to accurately identify dogs at risk for local and distant (metastatic) recurrence of mammary gland carcinoma and therefore would benefit from adjuvant therapy. Collagen density and fiber organization have been shown to regulate tumor progression in both mouse and human mammary tumors, with certain collagen signatures predicting poor outcomes in women with breast cancer. We hypothesized that collagen signatures in canine mammary tumor biopsies can serve as prognostic biomarkers and potential targets for treatment. We used second harmonic generation imaging to evaluate fibrillar collagen density, the presence of a tumor-stromal boundary, tumor associated collagen signatures (TACS) and individual collagen fiber characteristics (width, length and straightness) in grade I/II and grade III canine mammary tumors. Collagen density, as well as fiber width, length and straightness, were inversely correlated with patient overall survival time. Notably, grade III cases were less likely to have a tumor-stromal boundary and the lack of a boundary predicted poor outcome. Importantly, a lack of a defined tumor-stromal boundary and an increased collagen fiber width were associated with decreased survival even when tumor grade, patient stage, ovariohysterectomy status at the time of mammary tumor excision, and histologic evidence of lymphovascular invasion were considered in a multivariable model, indicating that these parameters could augment current methods to identify patients at high risk for local or metastatic progression/recurrence. Furthermore, these data, which identify for the first time, prognostic collagen biomarkers in naturally occurring mammary gland neoplasia in the dog, support the use of the dog as a translational model for tumor-stromal interactions in breast cancer.

Collaboration


Dive into the Elizabeth L. Buza's collaboration.

Top Co-Authors

Avatar

James M. Wilson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amy C. Durham

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Peter Bell

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ellen Puré

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

James Monslow

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Laura K. Richman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Nathan Katz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Tamara Goode

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Albert C. Lo

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge