Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth L. Christie is active.

Publication


Featured researches published by Elizabeth L. Christie.


Nature | 2015

Whole–genome characterization of chemoresistant ovarian cancer

Ann-Marie Patch; Elizabeth L. Christie; Dariush Etemadmoghadam; Dale W. Garsed; Joshy George; Sian Fereday; Katia Nones; Prue Cowin; Kathryn Alsop; Peter Bailey; Karin S. Kassahn; Felicity Newell; Michael Quinn; Stephen Kazakoff; Kelly Quek; Charlotte Wilhelm-Benartzi; Ed Curry; Huei San Leong; Anne Hamilton; Linda Mileshkin; George Au-Yeung; Catherine Kennedy; Jillian Hung; Yoke-Eng Chiew; Paul Harnett; Michael Friedlander; Jan Pyman; Stephen M. Cordner; Patricia O’Brien; Jodie Leditschke

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.


Cancer Research | 2012

LRP1B Deletion in High-Grade Serous Ovarian Cancers Is Associated with Acquired Chemotherapy Resistance to Liposomal Doxorubicin

Prue Cowin; Joshy George; Sian Fereday; Elizabeth Loehrer; Peter Van Loo; Carleen Cullinane; Dariush Etemadmoghadam; Sarah Ftouni; Laura Galletta; Michael S. Anglesio; Joy Hendley; Leanne Bowes; Karen E. Sheppard; Elizabeth L. Christie; Richard B. Pearson; Paul Harnett; Viola Heinzelmann-Schwarz; Michael Friedlander; Orla McNally; Michael A. Quinn; Peter J. Campbell; Anna deFazio; David Bowtell

High-grade serous cancer (HGSC), the most common subtype of ovarian cancer, often becomes resistant to chemotherapy, leading to poor patient outcomes. Intratumoral heterogeneity occurs in nearly all solid cancers, including ovarian cancer, contributing to the development of resistance mechanisms. In this study, we examined the spatial and temporal genomic variation in HGSC using high-resolution single-nucleotide polymorphism arrays. Multiple metastatic lesions from individual patients were analyzed along with 22 paired pretreatment and posttreatment samples. We documented regions of differential DNA copy number between multiple tumor biopsies that correlated with altered expression of genes involved in cell polarity and adhesion. In the paired primary and relapse cohort, we observed a greater degree of genomic change in tumors from patients that were initially sensitive to chemotherapy and had longer progression-free interval compared with tumors from patients that were resistant to primary chemotherapy. Notably, deletion or downregulation of the lipid transporter LRP1B emerged as a significant correlate of acquired resistance in our analysis. Functional studies showed that reducing LRP1B expression was sufficient to reduce the sensitivity of HGSC cell lines to liposomal doxorubicin, but not to doxorubicin, whereas LRP1B overexpression was sufficient to increase sensitivity to liposomal doxorubicin. Together, our findings underscore the large degree of variation in DNA copy number in spatially and temporally separated tumors in HGSC patients, and they define LRP1B as a potential contributor to the emergence of chemotherapy resistance in these patients.


Journal of Clinical Oncology | 2017

Reversion of BRCA1/2 Germline Mutations Detected in Circulating Tumor DNA From Patients With High-Grade Serous Ovarian Cancer

Elizabeth L. Christie; Sian Fereday; Ken Doig; Swetansu Pattnaik; Sarah-Jane Dawson; David Bowtell

Purpose Germline BRCA1 or BRCA2 mutations in patients with high-grade serous ovarian cancer (HGSC) are associated with favorable responses to chemotherapy. However, secondary intragenic (reversion) mutations that restore protein function lead to clinically significant rates of acquired resistance. The goal of this study was to determine whether reversion mutations could be found in an unbiased manner in circulating cell-free DNA (cfDNA) to predict treatment response in HGSC. Patients and Methods Plasma and tumor samples were obtained from 30 patients with HGSC with either BRCA1 or BRCA2 germline mutation. Two cohorts were ascertained: patients with a malignancy before undergoing primary HGSC debulking surgery (n = 14) or patients at disease recurrence (n = 16). Paired tumor and plasma samples were available for most patients (24 of 30). Targeted amplicon, next-generation sequencing was performed using primers that flanked germline mutations, whose design did not rely on prior knowledge of reversion sequences. Results Five patients were identified with intragenic mutations predicted to restore BRCA1/2 open reading frames, including two patients with multiple independent reversion alleles. Reversion mutations were only detected in tumor samples from patients with recurrent disease (five of 16) and only in cfDNA from patients with a tumor-detected reversion (three of five). Findings from a rapid autopsy of a patient with multiple independent reversions indicated that reversion-allele frequency in metastatic sites is an important determinant of assay sensitivity. Abundance of tumor-derived DNA in total cell-free DNA, as measured by TP53 mutant allele frequency, also affected assay sensitivity. All patients with reversions detected in tumor-derived DNA were resistant to platin- or poly ADP ribose polymerase inhibitor-based chemotherapy. Conclusion Reversion mutations can be detected in an unbiased analysis of cfDNA, suggesting clinical utility for predicting chemotherapy response in recurrent HGSC.


Nature Biotechnology | 2016

A community-based model of rapid autopsy in end-stage cancer patients

Kathryn Alsop; Heather Thorne; Shahneen Sandhu; Anne Hamilton; Christopher P. Mintoff; Elizabeth L. Christie; Odette Spruyt; Scott Williams; Orla McNally; Linda Mileshkin; Sumitra Ananda; Julene Hallo; Sherene Loi; Clare L. Scott; Peter Savas; Lisa Devereux; Patricia C. M. O'Brien; Sameera Gunawardena; Clare Hampson; Kate Strachan; Rufaro Diana Jaravaza; Victoria Francis; Gregory Young; David Ranson; Ravindra Samaranayake; David B. Stevens; Samantha E. Boyle; Clare G Fedele; Monique Topp; Gwo Ho

To the Editor: Systematic genomic studies, including the Cancer Genome Atlas (TCGA)1 and the International Cancer Genome Consortium (ICGC)2, have provided an unprecedented catalog of driver mutations in human cancer. However, these studies use mainly primary, pre-treatment tumor material obtained at surgery with curative intent. There is an urgent need to identify and characterize resistance mechanisms to understand how cancers can evade even the best medical efforts and kill patients; therefore, access to end-stage disease is important. Solid cancers show considerable spatial3, temporal4,5 and genomic heterogeneity at diagnosis. Selective pressure and mutagenic impact of treatment6 drives intra-patient evolution of cancer cell populations4,7. Understanding acquired resistance requires access to paired preand post-treatment samples4,7; however, curative surgery is typically confined to patients with locoregional disease, and opportunities for tumor sampling in advanced disseminated disease are limited. Here, we describe Cancer Tissue Collection After Death (CASCADE), an autopsy program that overcomes logistical challenges to enable collection of samples at end stage for research in melanoma and breast, ovarian and prostate cancers. For the CASCADE study, we aimed to recruit cancer patients close to the end of life, including those outside the minority of patients who die in hospitals. To preserve tissue integrity, autopsies must commence within a few hours of death, requiring access to around-the-clock services. Intervention in the emotionally charged end-of-life environment must be managed in an ethical manner and to a high standard. Finally, we aimed for the study to be highly cost-effective. We believe our approach to meeting these challenges is applicable to researchers in other large urban centers. Here we summarize the main steps in CASCADE’s operating protocol and our experiences from the initial 3 years and 30 autopsies performed (Fig. 1). Information about institutional review board approvals (including a detailed patient informationand-consent form), the autopsy procedure and certain laboratory processes is given in Supplementary Methods and Supplementary Figure 1. Recruitment of participants was led by the clinicians. Such discussions require careful consideration, in timing and in language, and were initiated only if there was a perception that tissue donation would be acceptable to the patients and their families. Factors suggesting acceptability include the emotional stability of the participant and family members and their clarity about and acceptance of the terminal nature of the disease. On occasion, participants prompted discussion by asking about organ or body donation. Consent discussions typically involved oncologists and/or palliative care physicians employed at recruiting hospitals who had established a care relationship with the participant and their family during the patient’s cancer journey. Frequently, the study was introduced at one meeting and discussed over several subsequent clinic visits, allowing patients and their families time to consider participation. We view the involvement of family members in the consent process as essential to support the participant and facilitate decisionmaking. Involvement of family members also ensures that they are fully aware of the autopsy process and helps to clarify funeral arrangements for the study team. After obtaining consent, study investigators collated clinical information, including that related to past and current treatment and diagnostic procedures such as imaging, on an ongoing basis. Between September 2012 and August 2015, 40 patients were approached, and 37 (92.5%) expressed interest in participating. Of those 32 patients (80%) consented; the other 5 had rapid clinical deterioration precluding


Clinical Cancer Research | 2017

Homologous Recombination DNA Repair Pathway Disruption and Retinoblastoma Protein Loss Are Associated with Exceptional Survival in High-Grade Serous Ovarian Cancer.

Dale W. Garsed; Kathryn Alsop; Sian Fereday; Catherine Emmanuel; Catherine J. Kennedy; Dariush Etemadmoghadam; Bo Gao; Val Gebski; Valérie Garès; Elizabeth L. Christie; Maartje C.A. Wouters; Katy Milne; Joshy George; Ann-Marie Patch; Jason Li; Gisela Mir Arnau; Timothy Semple; Sreeja R. Gadipally; Yoke-Eng Chiew; Joy Hendley; Thomas Mikeska; Giada V. Zapparoli; Kaushalya C. Amarasinghe; Sean M. Grimmond; John V. Pearson; Nicola Waddell; Jillian Hung; Colin J.R. Stewart; Raghwa Sharma; Prue E. Allan

Purpose: Women with epithelial ovarian cancer generally have a poor prognosis; however, a subset of patients has an unexpected dramatic and durable response to treatment. We sought to identify clinical, pathological, and molecular determinants of exceptional survival in women with high-grade serous cancer (HGSC), a disease associated with the majority of ovarian cancer deaths. Experimental Design: We evaluated the histories of 2,283 ovarian cancer patients and, after applying stringent clinical and pathological selection criteria, identified 96 with HGSC that represented significant outliers in terms of treatment response and overall survival. Patient samples were characterized immunohistochemically and by genome sequencing. Results: Different patterns of clinical response were seen: long progression-free survival (Long-PFS), multiple objective responses to chemotherapy (Multiple Responder), and/or greater than 10-year overall survival (Long-Term Survivors). Pathogenic germline and somatic mutations in genes involved in homologous recombination (HR) repair were enriched in all three groups relative to a population-based series. However, 29% of 10-year survivors lacked an identifiable HR pathway alteration, and tumors from these patients had increased Ki-67 staining. CD8+ tumor-infiltrating lymphocytes were more commonly present in Long-Term Survivors. RB1 loss was associated with long progression-free and overall survival. HR deficiency and RB1 loss were correlated, and co-occurrence was significantly associated with prolonged survival. Conclusions: There was diversity in the clinical trajectory of exceptional survivors associated with multiple molecular determinants of exceptional outcome in HGSC patients. Concurrent HR deficiency and RB1 loss were associated with favorable outcomes, suggesting that co-occurrence of specific mutations might mediate durable responses in such patients. Clin Cancer Res; 24(3); 569–80. ©2017 AACR. See related commentary by Peng and Mills, p. 508


Cancer Research | 2017

EIF1AX and NRAS Mutations Co-occur and Cooperate in Low-Grade Serous Ovarian Carcinomas

Dariush Etemadmoghadam; Walid J Azar; Ying Lei; Tania Moujaber; Dale W. Garsed; Catherine J. Kennedy; Sian Fereday; Chris Mitchell; Yoke Eng Chiew; Joy Hendley; Raghwa Sharma; Paul Harnett; Jason Li; Elizabeth L. Christie; Ann Marie Patch; Joshy George; George Au-Yeung; Gisela Mir Arnau; Timothy P. Holloway; Timothy Semple; John V. Pearson; Nicola Waddell; Sean M. Grimmond; Martin Köbel; Helen Rizos; Ivan B. Lomakin; David Bowtell; Anna deFazio

Low-grade serous ovarian carcinomas (LGSC) are associated with a poor response to chemotherapy and are molecularly characterized by RAS pathway activation. Using exome and whole genome sequencing, we identified recurrent mutations in the protein translational regulator EIF1AX and in NF1, USP9X, KRAS, BRAF, and NRAS RAS pathway mutations were mutually exclusive; however, we found significant co-occurrence of mutations in NRAS and EIF1AX Missense EIF1AX mutations were clustered at the N-terminus of the protein in a region associated with its role in ensuring translational initiation fidelity. Coexpression of mutant NRAS and EIF1AX proteins promoted proliferation and clonogenic survival in LGSC cells, providing the first example of co-occurring, growth-promoting mutational events in ovarian cancer. Cancer Res; 77(16); 4268-78. ©2017 AACR.


Nature | 2015

Corrigendum: Whole–genome characterization of chemoresistant ovarian cancer

Ann-Marie Patch; Elizabeth L. Christie; Dariush Etemadmoghadam; Dale W. Garsed; Joshy George; Sian Fereday; Katia Nones; Prue Cowin; Kathryn Alsop; Peter Bailey; Karin S. Kassahn; Felicity Newell; Michael Quinn; Stephen Kazakoff; Kelly Quek; Charlotte Wilhelm-Benartzi; Ed Curry; Huei San Leong; Anne Hamilton; Linda Mileshkin; George Au-Yeung; Catherine L. Kennedy; Jillian Hung; Yoke-Eng Chiew; Paul Harnett; Michael Friedlander; Michael A. Quinn; Jan Pyman; Stephen M. Cordner; Patricia O’Brien

This corrects the article DOI: 10.1038/nature14410


Annals of Oncology | 2017

Acquired chemotherapy resistance in ovarian cancer

Elizabeth L. Christie; David Bowtell

Most women diagnosed with high-grade serous ovarian cancer (HGSC) develop recurrent disease and chemotherapy resistance, despite initially responding to treatment. The genomic characteristics of HGSC samples collected at initial surgery have been extensively studied. However, due to challenges of sample collection following treatment, much less is known about the molecular features of recurrent disease. Our recent studies have identified mechanisms of acquired resistance and biomarkers in recurrent HGSCs that could lead to improved treatment approaches.Most women diagnosed with high-grade serous ovarian cancer (HGSC) develop recurrent disease and chemotherapy resistance, despite initially responding to treatment. The genomic characteristics of HGSC samples collected at initial surgery have been extensively studied. However, due to challenges of sample collection following treatment, much less is known about the molecular features of recurrent disease. Our recent studies have identified mechanisms of acquired resistance and biomarkers in recurrent HGSCs that could lead to improved treatment approaches.


BMC Cancer | 2018

Chemotherapy weakly contributes to predicted neoantigen expression in ovarian cancer

Timothy O’Donnell; Elizabeth L. Christie; Arun Ahuja; Jacqueline Buros; B. Arman Aksoy; David Bowtell; Alexandra Snyder; Jeff Hammerbacher

BackgroundPatients with highly mutated tumors, such as melanoma or smoking-related lung cancer, have higher rates of response to immune checkpoint blockade therapy, perhaps due to increased neoantigen expression. Many chemotherapies including platinum compounds are known to be mutagenic, but the impact of standard treatment protocols on mutational burden and resulting neoantigen expression in most human cancers is unknown.MethodsWe sought to quantify the effect of chemotherapy treatment on computationally predicted neoantigen expression for high grade serous ovarian carcinoma patients enrolled in the Australian Ovarian Cancer Study. In this series, 35 of 114 samples were collected after exposure to chemotherapy; 14 are matched with an untreated sample from the same patient. Our approach integrates whole genome and RNA sequencing of bulk tumor samples with class I MHC binding prediction and mutational signatures extracted from studies of chemotherapy-exposed Caenorhabditis elegans and Gallus gallus cells. We additionally investigated the relationship between neoantigens, tumor infiltrating immune cells estimated from RNA-seq with CIBERSORT, and patient survival.ResultsGreater neoantigen burden and CD8+ T cell infiltration in primary, pre-treatment samples were independently associated with improved survival. Relapse samples collected after chemotherapy harbored a median of 78% more expressed neoantigens than untreated primary samples, a figure that combines the effects of chemotherapy and other processes operative during relapse. The contribution from chemotherapy-associated signatures was small, accounting for a mean of 5% (range 0–16) of the expressed neoantigen burden in relapse samples. In both treated and untreated samples, most neoantigens were attributed to COSMIC Signature (3), associated with BRCA disruption, Signature (1), associated with a slow mutagenic process active in healthy tissue, and Signature (8), of unknown etiology.ConclusionRelapsed ovarian cancers harbor more predicted neoantigens than primary tumors, but the increase is due to pre-existing mutational processes, not mutagenesis from chemotherapy.


Cancer Research | 2016

Blood Worth Bottling: Circulating Tumor DNA as a Cancer Biomarker

Elizabeth L. Christie; Sarah-Jane Dawson; David Bowtell

See related article by Jahr et al., [Cancer Res 2001;61:1659–65][1] . Visit the Cancer Research 75th Anniversary [timeline][2]. Circulating cell-free DNA (cfDNA) was discovered in 1948 ([1][3]); however, it was not until 1994 that it was used to identify the presence of tumor-specific mutations

Collaboration


Dive into the Elizabeth L. Christie's collaboration.

Top Co-Authors

Avatar

David Bowtell

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Sian Fereday

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale W. Garsed

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Joshy George

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Ann-Marie Patch

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kathryn Alsop

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Hamilton

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

George Au-Yeung

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge