Elizabeth Langley
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth Langley.
The Journal of Antibiotics | 2010
Sergio Sánchez; Adán Chávez; Angela Forero; Yolanda García-Huante; Alba Romero; Mauricio Sánchez; Diana Rocha; Brenda Sánchez; Mariana Ávalos; Silvia Guzmán-Trampe; Romina Rodríguez-Sanoja; Elizabeth Langley; Beatriz Ruiz
Antibiotics are low-molecular-mass products of secondary metabolism, nonessential for the growth of producing organisms, but very important for human health. They have unusual structures and are most often formed during the late growth phase of the producing microorganisms. Their production arises from intracellular intermediates, which are condensed into more complex structures through defined biochemical pathways. Their synthesis can be influenced by manipulating the type and concentration of nutrients formulating the culture media. Among them, the effect of the carbon source has been the subject of continuous studies for both industry and research groups. Glucose and other carbohydrates have been reported to interfere with antibiotic synthesis and this effect depends on the rapid utilization of the preferred carbon source. Different mechanisms have been described in bacteria and fungi to explain the negative effects of carbon catabolites on antibiotic production. They show important differences depending on the microbe being considered. Their understanding and manipulation have been useful for both perfecting fermentation conditions to produce anti-infectives and for strain improvement. To improve the production of antibiotics, carbon source repression can be decreased or abolished by mutations resulting in antimetabolite resistance. Enzymes reported as regulated by the carbon source have been used as targets for strain improvement. During the last few years, important advances have been reported elucidating the essential aspects of carbon source regulation on antibiotic production at biochemical and molecular levels. The aim of this review is to describe these advances, giving special emphasis to those reported for the genus Streptomyces.
Critical Reviews in Microbiology | 2010
Beatriz Ruiz; Adán Chávez; Angela Forero; Yolanda García-Huante; Alba Romero; Mauricio Sánchez; Diana Rocha; Brenda Sánchez; Romina Rodríguez-Sanoja; Sergio Sánchez; Elizabeth Langley
Microbial secondary metabolites are low molecular mass products, not essential for growth of the producing cultures, but very important for human health. They include antibiotics, antitumor agents, cholesterol-lowering drugs, and others. They have unusual structures and are usually formed during the late growth phase of the producing microorganisms. Its synthesis can be influenced greatly by manipulating the type and concentration of the nutrients formulating the culture media. Among these nutrients, the effect of the carbon sources has been the subject of continuous studies for both, industry and research groups. Different mechanisms have been described in bacteria and fungi to explain the negative carbon catabolite effects on secondary metabolite production. Their knowledge and manipulation have been useful either for setting fermentation conditions or for strain improvement. During the last years, important advances have been reported on these mechanisms at the biochemical and molecular levels. The aim of the present review is to describe these advances, giving special emphasis to those reported for the genus Streptomyces.
Lipids | 2001
Beatriz Ruiz; Amelia Farrés; Elizabeth Langley; Felipe Masso; Sergio Sánchez
Penicillium candidum produces and secretes a single extracellular lipase with a monomer molecular weight of 29 kDa. However, this enzyme forms dimers and higher molecular weight aggregates under nondenaturing conditions. The lipase from P. candidum was purified 37-fold using Octyl-Sepharose CL-4B and DEAE-Sephadex columns. The optimal assay conditions for lipase activity were 35°C and pH 9. The lipase was stable in the pH range of 5–6 with a pl of 5.5, but rapid loss of the enzyme activity was observed above 25°C. Tributyrin was found to be the best substrate for the P. candidum lipase, among those tested. Metal ions such as Fe2+ and Cu2+ inhibited enzymatic activity and only Ca2+ was able to slightly enhance lipase activity. Ionic detergents inhibited the activity of the enzyme, whereas nonionic detergents stimulated lipase activity.
Applied Microbiology and Biotechnology | 1999
Laura Escalante; I. Ramos; Iveta Imriskova; Elizabeth Langley; Sergio Sánchez
Abstract The effect of glucose on growth and anthracycline production by Streptomyces peucetius var. caesius was examined in a chemically defined medium. Glucose concentrations above 100 mM inhibited anthracycline synthesis in the original strain without causing significant change in growth and final pH values. This effect was observed when the carbohydrate was added initially or after 24 h fermentation, but not when added during the stationary growth phase. When the microorganism was pregrown in 100 mM glucose and then transferred to a resting cell system with 444 mM glucose, no significant differences in antibiotic production were observed compared to the control without glucose. The negative effect of glucose on antibiotic synthesis was not observed in a mutant (2-dogR–21) resistant to growth inhibition by 2-deoxyglucose. Glucose consumption by this mutant was approximately 30% of that utilized by the original strain. Compared to the original strain, the mutant 2-dogR–21 exhibited a reduction of 50% in glucose transport and an 85% decrease in glucose kinase activity. The experimental evidence obtained suggests that glucose represses anthracycline formation in a transitory manner and that this effect is related to glucose transport and phosphorylation.
Applied Microbiology and Biotechnology | 2005
Silvia Guzmán; Itzel Ramos; Elizabeth Moreno; Beatriz Ruiz; Romina Rodríguez-Sanoja; Laura Escalante; Elizabeth Langley; Sergio Sánchez
Streptomyces peucetius var. caesius produces a family of secondary metabolites called anthracyclines. Production of these compounds is negatively affected in the presence of glucose, galactose, and lactose, but the greatest effect is observed under conditions of excess glucose. Other carbon sources, such as arabinose or glutamate, show either no effect or stimulate production. Among the carbon sources that negatively affect anthracycline production, glucose is consumed in greater concentrations. We determined glucose and galactose transport in S. peucetius var. caesius and in a mutant of this strain whose anthracycline production is insensitive to carbon catabolite repression (CCR). In the original strain, incorporation of glucose and galactose was stimulated when the microorganism was grown in media containing these sugars, although we also observed basal galactose incorporation. Both the induced and the basal incorporation of galactose were suppressed when the microorganism was grown in the presence of glucose. Furthermore, adding glucose directly during the transport assay also inhibited galactose incorporation. In the mutant strain, we observed a reduction in both glucose (48%) and galactose (81%) incorporation compared to the original. Galactose transport in this mutant showed reduced sensitivity to the negative effect of glucose; however, it was still sensitive to inhibition. The deficient transport of these sugars, as well as CCR sensitivity to glucose in this mutant was corrected when the mutant was transformed with the SCO2127 region of the Streptomyces coelicolor genome. Our results support a role for glucose as the most easily utilized carbon source capable of exerting the greatest repression on anthracycline biosynthesis. In consequence, glucose also prevented the repressive effect of galactose by suppressing its incorporation. This suggests the participation of an integral regulatory system, which is initiated by an increase in incorporation of repressive sugars and their metabolism as a prerequisite for establishing the phenomenon of CCR in S. peucetius var. caesius.
Journal of Bioscience and Bioengineering | 2001
Alejandra Masetto; Luis B. Flores-Cotera; Carlos Tello Díaz; Elizabeth Langley; Sergio Sánchez
Microbiology | 2005
Silvia Guzmán; Alonso Carmona; Laura Escalante; Iveta Imriskova; Ruth López; Romina Rodríguez-Sanoja; Beatriz Ruiz; Luis Servín-González; Sergio Sánchez; Elizabeth Langley
Research in Microbiology | 2005
Iveta Imriskova; Roberto Arreguín-Espinosa; Silvia Guzmán; Romina Rodríguez-Sanoja; Elizabeth Langley; Sergio Sánchez
Applied Microbiology and Biotechnology | 2011
Adán Chávez; Angela Forero; Mauricio Sánchez; Romina Rodríguez-Sanoja; Guillermo Mendoza-Hernández; Luis Servín-González; Brenda Sánchez; Yolanda García-Huante; Diana Rocha; Elizabeth Langley; Beatriz Ruiz; Sergio Sánchez
Journal of Industrial Microbiology & Biotechnology | 2009
Adán Chávez; Yolanda García-Huante; Beatriz Ruiz; Elizabeth Langley; Romina Rodríguez-Sanoja; Sergio Sánchez