Elizabeth M. Bradshaw
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth M. Bradshaw.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Wassim Elyaman; Elizabeth M. Bradshaw; Catherine Uyttenhove; Valerie Dardalhon; Amit Awasthi; Jaime Imitola; Estelle Bettelli; Mohamed Oukka; Jacques Van Snick; Jean-Christophe Renauld; Vijay K. Kuchroo; Samia J. Khoury
The development of T helper (TH)17 and regulatory T (Treg) cells is reciprocally regulated by cytokines. Transforming growth factor (TGF)-β alone induces FoxP3+ Treg cells, but together with IL-6 or IL-21 induces TH17 cells. Here we demonstrate that IL-9 is a key molecule that affects differentiation of TH17 cells and Treg function. IL-9 predominantly produced by TH17 cells, synergizes with TGF-β1 to differentiate naïve CD4+ T cells into TH17 cells, while IL-9 secretion by TH17 cells is regulated by IL-23. Interestingly, IL-9 enhances the suppressive functions of FoxP3+ CD4+ Treg cells in vitro, and absence of IL-9 signaling weakens the suppressive activity of nTregs in vivo, leading to an increase in effector cells and worsening of experimental autoimmune encephalomyelitis. The mechanism of IL-9 effects on TH17 and Tregs is through activation of STAT3 and STAT5 signaling. Our findings highlight a role of IL-9 as a regulator of pathogenic versus protective mechanisms of immune responses.
Nature Neuroscience | 2013
Elizabeth M. Bradshaw; Lori B. Chibnik; Brendan T. Keenan; Linda Ottoboni; Towfique Raj; Anna Tang; Laura Rosenkrantz; Selina Imboywa; Michelle Lee; Alina Von Korff; Martha Clare Morris; Denis A. Evans; Keith Johnson; Reisa A. Sperling; Julie A. Schneider; David A. Bennett; Philip L. De Jager
In our functional dissection of the CD33 Alzheimers disease susceptibility locus, we found that the rs3865444C risk allele was associated with greater cell surface expression of CD33 in the monocytes (t50 = 10.06, Pjoint = 1.3 × 10−13) of young and older individuals. It was also associated with diminished internalization of amyloid-β 42 peptide, accumulation of neuritic amyloid pathology and fibrillar amyloid on in vivo imaging, and increased numbers of activated human microglia.
Journal of Immunology | 2009
Elizabeth M. Bradshaw; Wassim Elyaman; Tihamer Orban; Peter A. Gottlieb; Sally C. Kent; David A. Hafler
Autoimmune diseases including type 1 diabetes (T1D) are thought to have a Th1/Th17 bias. The underlying mechanisms driving the activation and differentiation of these proinflammatory T cells are unknown. We examined the monocytes isolated directly from the blood of T1D patients and found they spontaneously secreted the proinflammatory cytokines IL-1β and IL-6, which are known to induce and expand Th17 cells. Moreover, these in vivo-activated monocytes from T1D subjects induced more IL-17-secreting cells from memory T cells compared with monocytes from healthy control subjects. The induction of IL-17-secreting T cells by monocytes from T1D subjects was reduced in vitro with a combination of an IL-6-blocking Ab and IL-1R antagonist. In this study, we report a significant although modest increase in the frequency of IL-17-secreting cells in lymphocytes from long-term patients with T1D compared with healthy controls. These data suggest that the innate immune system in T1D may drive the adaptive immune system by expanding the Th17 population of effector T cells.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Qing Han; Neda Bagheri; Elizabeth M. Bradshaw; David A. Hafler; Douglas A. Lauffenburger; J. Christopher Love
The release of cytokines by T cells defines a significant part of their functional activity in vivo, and their ability to produce multiple cytokines has been associated with beneficial immune responses. To date, time-integrated end-point measurements have obscured whether these polyfunctional states arise from the simultaneous or successive release of cytokines. Here, we used serial, time-dependent, single-cell analysis of primary human T cells to resolve the temporal dynamics of cytokine secretion from individual cells after activation ex vivo. We show that multifunctional, Th1-skewed cytokine responses (IFN-γ, IL-2, TNFα) are initiated asynchronously, but the ensuing dynamic trajectories of these responses evolve programmatically in a sequential manner. That is, cells predominantly release one of these cytokines at a time rather than maintain active secretion of multiple cytokines simultaneously. Furthermore, these dynamic trajectories are strongly associated with the various states of cell differentiation suggesting that transient programmatic activities of many individual T cells contribute to sustained, population-level responses. The trajectories of responses by single cells may also provide unique, time-dependent signatures for immune monitoring that are less compromised by the timing and duration of integrated measures.
Neurology | 2005
Steven A. Greenberg; Elizabeth M. Bradshaw; Jack L. Pinkus; Geraldine S. Pinkus; T. Burleson; B. Due; Lisa Bregoli; Kevin C. O'Connor; Anthony A. Amato
Background: Previous immunohistochemical studies of muscle from patients with inclusion body myositis and polymyositis found many more T cells than B cells, suggesting a role for intramuscular cell-mediated immune mechanisms rather than humoral mechanisms. Methods: Microarray studies were performed on muscle biopsy specimens from 40 patients with inclusion body myositis (IBM; n = 23), polymyositis (PM; n = 6), and without neuromuscular disease (n = 11). Reverse transcription PCR of selected immunoglobulin gene transcripts was performed on two patient samples. Qualitative immunohistochemical studies for B-cell lineage cell surface markers were performed on 28 muscle specimens and quantitative studies performed on a subset of 19 untreated patients with IBM or PM. CD138+ cells were isolated from muscle using laser capture microdissection, and immunoglobulin transcripts were PCR amplified to determine the presence or absence of immunoglobulin gene rearrangements unique to the B-cell lineage. Results: Immunoglobulin gene transcripts accounted for 59% in IBM and 33% in PM of the most stringently defined highest differentially expressed muscle transcripts compared with normal. Plasma cells, terminally differentiated B cells expressing CD138 but not CD19 or CD20, are present in IBM and PM muscle in numbers several times higher than B cells. Conclusions: There are differentiated B cells in the form of CD138+ plasma cells within the muscle of patients with inclusion body myositis and polymyositis. The principle of linked recognition of B-cell activation predicts several strategies for autoantigen discovery that could not otherwise be pursued through the study of the infiltrating T-cell population alone.
Journal of Immunology | 2010
Gaëlle Beriou; Elizabeth M. Bradshaw; Ester Lozano; Cristina Maria Costantino; William Hastings; Tihamer Orban; Wassim Elyaman; Samia J. Khoury; Vijay K. Kuchroo; Clare Baecher-Allan; David A. Hafler
The secretion of IL-9, initially recognized as a Th2 cytokine, was recently attributed to a novel CD4 T cell subset termed Th9 in the murine system. However, IL-9 can also be secreted by mouse Th17 cells and may mediate aspects of the proinflammatory activities of Th17 cells. Here we report that IL-9 is secreted by human naive CD4 T cells in response to differentiation by Th9 (TGF-β and IL-4) or Th17 polarizing conditions. Yet, these differentiated naive cells did not coexpress IL-17 and IL-9, unless they were repeatedly stimulated under Th17 differentiation-inducing conditions. In contrast to the naive cells, memory CD4 T cells were induced to secrete IL-9 by simply providing TGF-β during stimulation, as neither IL-4 nor proinflammatory cytokines were required. Furthermore, the addition of TGF-β to the Th17-inducing cytokines (IL-1β, IL-6, IL-21, IL-23) that induce memory cells to secrete IL-17, resulted in the marked coexpression of IL-9 in IL-17 producing memory cells. The proinflammatory cytokine mediating TGF-β–dependent coexpression of IL-9 and IL-17 was identified to be IL-1β. Moreover, circulating monocytes were potent costimulators of IL-9 production by Th17 cells via their capacity to secrete IL-1β. Finally, to determine whether IL-9/IL-17 coproducing CD4 cells were altered in an inflammatory condition, we examined patients with autoimmune diabetes and demonstrated that these subjects exhibit a higher frequency of memory CD4 cells with the capacity to transition into IL-9+IL-17+ cells. These data demonstrate the presence of IL-17+IL-9+ CD4 cells induced by IL-1β that may play a role in human autoimmune disease.
Immunity | 2012
Wassim Elyaman; Ribal Bassil; Elizabeth M. Bradshaw; William Orent; Youmna Lahoud; Bing Zhu; Freddy Radtke; Hideo Yagita; Samia J. Khoury
Interleukin 9 (IL-9) is a pleiotropic cytokine that can regulate autoimmune responses by enhancing regulatory CD4(+)FoxP3(+) T regulatory (Treg) cell survival and T helper 17 (Th17) cell proliferation. Here, we analyzed the costimulatory requirements for the induction of Th9 cells, and demonstrated that Notch pathway cooperated with TGF-β signaling to induce IL-9. Conditional ablation of Notch1 and Notch2 receptors inhibited the development of Th9 cells. Notch1 intracellular domain (NICD1) recruited Smad3, downstream of TGF-β cytokine signaling, and together with recombining binding protein (RBP)-Jκ bound the Il9 promoter and induced its transactivation. In experimental autoimmune encephalomyelitis (EAE), Jagged2 ligation regulated clinical disease in an IL-9-dependent fashion. Signaling through Jagged2 expanded Treg cells and suppressed EAE when administered before antigen immunization, but worsened EAE when administered concurrently with immunization by favoring Th17 cell expansion. We propose that Notch and Smad3 cooperate to induce IL-9 and participate in regulating the immune response.
Journal of Immunology | 2007
Elizabeth M. Bradshaw; Ana Orihuela; Shannon McArdel; Mohammad Salajegheh; Anthony A. Amato; David A. Hafler; Steven A. Greenberg; Kevin C. O'Connor
The inflammatory myopathies are putative autoimmune disorders characterized by muscle weakness and the presence of intramuscular inflammatory infiltrates. Although inclusion body myositis and polymyositis have been characterized as cytotoxic CD8+ T cell-mediated diseases, we recently demonstrated high frequencies of CD138+ plasma cells in the inflamed muscle tissue of patients with these diseases. To gain a deeper understanding of the role these B cell family members play in the disease pathology, we examined the molecular characteristics of the H chain portion of the Ag receptor. Biopsies of muscle tissue were sectioned and tissue regions and individual cells were isolated through laser capture microdissection. Ig H chain gene transcripts isolated from the sections, regions, and cells were used to determine the variable region gene sequences. Analysis of these sequences revealed clear evidence of affinity maturation in that significant somatic mutation, isotype switching, receptor revision, codon insertion/deletion, and oligoclonal expansion had occurred within the B and plasma cell populations. Moreover, analysis of tissue regions isolated by laser capture microdissection revealed both clonal expansion and variation, suggesting that local B cell maturation occurs within muscle. In contrast, sequences from control muscle tissues and peripheral blood revealed none of these characteristics found in inflammatory myopathy muscle tissue. Collectively, these data demonstrate that Ag drives a B cell Ag-specific response in muscle in patients with dermatomyositis, inclusion body myositis, and polymyositis. These findings highlight the need for a revision of the current paradigm of exclusively T cell-mediated intramuscular Ag-specific autoimmunity in inclusion body myositis and polymyositis.
Journal of Immunology | 2007
Wassim Elyaman; Elizabeth M. Bradshaw; Yue Wang; Mohamed Oukka; Pia Kivisäkk; Shigeru Chiba; Hideo Yagita; Samia J. Khoury
Notch signaling plays an important role during T cell development in the thymus and in T cell activation but the role of Notch in autoimmunity is not clear. We investigated the role of Jagged1 and Delta1 in experimental autoimmune encephalomyelitis. During experimental autoimmune encephalomyelitis, Delta1 expression is up-regulated on dendritic cells and B cells after priming while Jagged1 is up-regulated only on dendritic cells. Administration of anti-Jagged1 Ab exacerbated clinical disease while that of anti-Delta1 Ab reduced the severity of the clinical disease. In contrast, administration of Jagged1-Fc protected from disease, that of Delta1-Fc exacerbated disease. Treatment with Jagged1-Fc was associated with increased IL-10-producing Ag-specific cells in the CNS, while anti-Jagged1 decreased the frequency of IL-10-producing cells. Treatment with Delta1-Fc increased Th1 cells in the CNS, while anti-Delta-1 decreased the frequency of Th1 cells. Manipulation of Delta1 or Jagged1 had no effect on the frequency of Th17 cells or FoxP3+ cells. Moreover, Jagged1 may play a role in CNS homeostasis because murine astrocytes specifically express Jagged1 that is up-regulated by TGF-β, whereas IFN-γ, TNF-α, and IL-17 decrease Jagged1 expression. Our study provides novel data about differential roles of Notch ligands in regulating inflammation in the periphery as well as in the CNS.
Clinical Immunology | 2008
Elizabeth M. Bradshaw; Sally C. Kent; Vinay Tripuraneni; Tihamer Orban; Hidde L. Ploegh; David A. Hafler; J. Christopher Love
Cell surface determinants, cytokines and antibodies secreted by hematopoietic cells are used to classify their lineage and function. Currently available techniques are unable to elucidate multiple secreted proteins while also assigning phenotypic surface-displayed markers to the individual living cells. Here, a soft lithographic method, microengraving, was adapted for the multiplexed interrogation of populations of individual human peripheral blood mononuclear cells for secreted cytokines (IFN-gamma and IL-6), antigen-specific antibodies, and lineage-specific surface-expressed markers. Application of the method to a clinical sample from a recent-onset Type 1 diabetic subject with a positive titer of anti-insulin antibodies showed that approximately 0.58% of circulating CD19(+) B cells secreted proinsulin-reactive antibodies of the IgG isotype and 2-3% of circulating cells secreted IL-6. These data demonstrate the utility of microengraving for interrogating multiple phenotypes of single human cells concurrently and for detecting rare populations of cells by their secreted products.