Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth M. Gillanders is active.

Publication


Featured researches published by Elizabeth M. Gillanders.


Nature Genetics | 1998

Evidence for a prostate cancer susceptibility locus on the X chromosome.

Jianfeng Xu; Deborah A. Meyers; Diha Freije; Sarah D. Isaacs; Kathy E. Wiley; Deborah Nusskern; Charles M. Ewing; Eric Wilkens; Piroska Bujnovszky; G. Steven Bova; Patrick C. Walsh; William B. Isaacs; Johanna Schleutker; Mika P. Matikainen; Teuvo L.J. Tammela; Tapio Visakorpi; Olli Kallioniemi; Rebecca Berry; Daniel J. Schaid; Amy J. French; Shannon K. McDonnell; Jennifer J. Schroeder; Michael L. Blute; Stephen N. Thibodeau; Henrik Grönberg; Monika Emanuelsson; Jan-Erik Damber; Anders Bergh; Björn Anders Jonsson; Jeffrey R. Smith

Over 200,000 new prostate cancer cases are diagnosed in the United States each year, accounting for more than 35% of all cancer cases affecting men, and resulting in 40,000 deaths annually1. Attempts to characterize genes predisposing to prostate cancer have been hampered by a high phenocopy rate, the late age of onset of the disease and, in the absence of distinguishing clinical features, the inability to stratify patients into subgroups relative to suspected genetic locus heterogeneity. We previously performed a genome-wide search for hereditary prostate cancer (HPC) genes, finding evidence of a prostate cancer susceptibility locus on chromosome 1 (termed HPC1; ref. 2). Here we present evidence for the location of a second prostate cancer susceptibility gene, which by heterogeneity estimates accounts for approximately 16% of HPC cases. This HPC locus resides on the X chromosome (Xq27-28), a finding consistent with results of previous population-based studies suggesting an X-linked mode of HPC inheritance. Linkage to Xq27-28 was observed in a combined study population of 360 prostate cancer families collected at four independent sites in North America, Finland and Sweden. A maximum two-point lod score of 4.60 was observed at DXS1113, θ=0.26, in the combined data set. Parametric multipoint and non-parametric analyses provided results consistent with the two-point analysis. evidence for genetic locus heterogeneity was observed, with similar estimates of the proportion of linked families in each separate family collection. Genetic mapping of the locus represents an important initial step in the identification of an X-linked gene implicated in the aetiology of HPC.


Nature Genetics | 2002

HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome.

John D. Carpten; Christiane M. Robbins; Andrea Villablanca; Lars Forsberg; S. Presciuttini; Joan E. Bailey-Wilson; William F. Simonds; Elizabeth M. Gillanders; A.M. Kennedy; Jindong Chen; Sunita K. Agarwal; Raman Sood; Mary Pat Jones; Tracy Moses; Carola J. Haven; David Petillo; P.D. Leotlela; B. Harding; D. Cameron; A.A. Pannett; Anders Höög; H. Heath; L.A. James-Newton; Bruce G. Robinson; R.J. Zarbo; Branca Cavaco; W. Wassif; Nancy D. Perrier; I.B. Rosen; U. Kristoffersson

We report here the identification of a gene associated with the hyperparathyroidism–jaw tumor (HPT–JT) syndrome. A single locus associated with HPT–JT (HRPT2) was previously mapped to chromosomal region 1q25–q32. We refined this region to a critical interval of 12 cM by genotyping in 26 affected kindreds. Using a positional candidate approach, we identified thirteen different heterozygous, germline, inactivating mutations in a single gene in fourteen families with HPT–JT. The proposed role of HRPT2 as a tumor suppressor was supported by mutation screening in 48 parathyroid adenomas with cystic features, which identified three somatic inactivating mutations, all located in exon 1. None of these mutations were detected in normal controls, and all were predicted to cause deficient or impaired protein function. HRPT2 is a ubiquitously expressed, evolutionarily conserved gene encoding a predicted protein of 531 amino acids, for which we propose the name parafibromin. Our findings suggest that HRPT2 is a tumor-suppressor gene, the inactivation of which is directly involved in predisposition to HPT–JT and in development of some sporadic parathyroid tumors.


Nature Genetics | 2002

Germline mutations in the ribonuclease L gene in families showing linkage with HPC1.

John D. Carpten; Nina N. Nupponen; Sarah D. Isaacs; Raman Sood; Christiane M. Robbins; Jun Xu; Mezbah U. Faruque; Tracy Moses; C. Ewing; Elizabeth M. Gillanders; P. Hu; P. Bujnovszky; Izabela Makalowska; Agnes Baffoe-Bonnie; D. Faith; Jennifer A. Smith; Dietrich A. Stephan; Kathy E. Wiley; Michael J. Brownstein; Derek Gildea; B. Kelly; R. Jenkins; Galen Hostetter; M. Matikainen; J. Schleutker; K. Klinger; T. Connors; Yong Bing Xiang; Zhining Wang; A. De Marzo

Although prostate cancer is the most common non-cutaneous malignancy diagnosed in men in the United States, little is known about inherited factors that influence its genetic predisposition. Here we report that germline mutations in the gene encoding 2′-5′-oligoadenylate(2-5A)–dependent RNase L (RNASEL) segregate in prostate cancer families that show linkage to the HPC1 (hereditary prostate cancer 1) region at 1q24–25 (ref. 9). We identified RNASEL by a positional cloning/candidate gene method, and show that a nonsense mutation and a mutation in an initiation codon of RNASEL segregate independently in two HPC1-linked families. Inactive RNASEL alleles are present at a low frequency in the general population. RNASEL regulates cell proliferation and apoptosis through the interferon-regulated 2-5A pathway and has been suggested to be a candidate tumor suppressor gene. We found that microdissected tumors with a germline mutation showed loss of heterozygosity and loss of RNase L protein, and that RNASEL activity was reduced in lymphoblasts from heterozyogous individuals compared with family members who were homozygous with respect to the wildtype allele. Thus, germline mutations in RNASEL may be of diagnostic value, and the 2-5A pathway might provide opportunities for developing therapies for those with prostate cancer.


Nature Genetics | 2009

Genome-wide association study identifies three loci associated with melanoma risk

D. Timothy Bishop; Florence Demenais; Mark M. Iles; Mark Harland; John C. Taylor; Eve Corda; Juliette Randerson-Moor; Joanne F. Aitken; Marie-Françoise Avril; Esther Azizi; Bert Bakker; Giovanna Bianchi-Scarrà; Brigitte Bressac-de Paillerets; Donato Calista; Lisa A. Cannon-Albright; Thomas Chin-a-Woeng; Tadeusz Dębniak; Gilli Galore-Haskel; Paola Ghiorzo; Ivo Gut; Johan Hansson; Marko Hocevar; Veronica Höiom; John L. Hopper; Christian Ingvar; Peter A. Kanetsky; Richard Kefford; Maria Teresa Landi; Julie Lang; Jan Lubinski

We report a genome-wide association study of melanoma conducted by the GenoMEL consortium based on 317K tagging SNPs for 1,650 selected cases and 4,336 controls, with replication in an additional two cohorts (1,149 selected cases and 964 controls from GenoMEL, and a population-based case-control study in Leeds of 1,163 cases and 903 controls). The genome-wide screen identified five loci with genotyped or imputed SNPs reaching P < 5 × 10−7. Three of these loci were replicated: 16q24 encompassing MC1R (combined P = 2.54 × 10−27 for rs258322), 11q14-q21 encompassing TYR (P = 2.41 × 10−14 for rs1393350) and 9p21 adjacent to MTAP and flanking CDKN2A (P = 4.03 × 10−7 for rs7023329). MC1R and TYR are associated with pigmentation, freckling and cutaneous sun sensitivity, well-recognized melanoma risk factors. Common variants within the 9p21 locus have not previously been associated with melanoma. Despite wide variation in allele frequency, these genetic variants show notable homogeneity of effect across populations of European ancestry living at different latitudes and show independent association to disease risk.


Cancer Research | 2006

High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL

Alisa M. Goldstein; May Chan; Mark Harland; Elizabeth M. Gillanders; Nicholas K. Hayward; Marie-Françoise Avril; Esther Azizi; Giovanna Bianchi-Scarrà; D. Timothy Bishop; Brigitte Bressac-de Paillerets; William Bruno; Donato Calista; Lisa A. Cannon Albright; Florence Demenais; David E. Elder; Paola Ghiorzo; Nelleke A. Gruis; Johan Hansson; David Hogg; Elizabeth A. Holland; Peter A. Kanetsky; Richard F. Kefford; Maria Teresa Landi; Julie Lang; Sancy A. Leachman; Rona M. MacKie; Veronica Magnusson; Graham J. Mann; Kristin B. Niendorf; Julia A. Newton Bishop

GenoMEL, comprising major familial melanoma research groups from North America, Europe, Asia, and Australia has created the largest familial melanoma sample yet available to characterize mutations in the high-risk melanoma susceptibility genes CDKN2A/alternate reading frames (ARF), which encodes p16 and p14ARF, and CDK4 and to evaluate their relationship with pancreatic cancer (PC), neural system tumors (NST), and uveal melanoma (UM). This study included 466 families (2,137 patients) with at least three melanoma patients from 17 GenoMEL centers. Overall, 41% (n = 190) of families had mutations; most involved p16 (n = 178). Mutations in CDK4 (n = 5) and ARF (n = 7) occurred at similar frequencies (2-3%). There were striking differences in mutations across geographic locales. The proportion of families with the most frequent founder mutation(s) of each locale differed significantly across the seven regions (P = 0.0009). Single founder CDKN2A mutations were predominant in Sweden (p.R112_L113insR, 92% of familys mutations) and the Netherlands (c.225_243del19, 90% of familys mutations). France, Spain, and Italy had the same most frequent mutation (p.G101W). Similarly, Australia and United Kingdom had the same most common mutations (p.M53I, c.IVS2-105A>G, p.R24P, and p.L32P). As reported previously, there was a strong association between PC and CDKN2A mutations (P < 0.0001). This relationship differed by mutation. In contrast, there was little evidence for an association between CDKN2A mutations and NST (P = 0.52) or UM (P = 0.25). There was a marginally significant association between NST and ARF (P = 0.05). However, this particular evaluation had low power and requires confirmation. This GenoMEL study provides the most extensive characterization of mutations in high-risk melanoma susceptibility genes in families with three or more melanoma patients yet available.


Journal of Medical Genetics | 2006

Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents

Alisa M. Goldstein; May Chan; Mark Harland; Nicholas K. Hayward; Florence Demenais; D. Timothy Bishop; Esther Azizi; Wilma Bergman; Giovanna Bianchi-Scarrà; William Bruno; Donato Calista; Lisa A. Cannon Albright; Valérie Chaudru; Agnès Chompret; Francisco Cuellar; David E. Elder; Paola Ghiorzo; Elizabeth M. Gillanders; Nelleke A. Gruis; Johan Hansson; David Hogg; Elizabeth A. Holland; Peter A. Kanetsky; Richard F. Kefford; Maria Teresa Landi; Julie Lang; Sancy A. Leachman; Rona M. MacKie; Veronica Magnusson; Graham J. Mann

Background: The major factors individually reported to be associated with an increased frequency of CDKN2A mutations are increased number of patients with melanoma in a family, early age at melanoma diagnosis, and family members with multiple primary melanomas (MPM) or pancreatic cancer. Methods: These four features were examined in 385 families with ⩾3 patients with melanoma pooled by 17 GenoMEL groups, and these attributes were compared across continents. Results: Overall, 39% of families had CDKN2A mutations ranging from 20% (32/162) in Australia to 45% (29/65) in North America to 57% (89/157) in Europe. All four features in each group, except pancreatic cancer in Australia (p = 0.38), individually showed significant associations with CDKN2A mutations, but the effects varied widely across continents. Multivariate examination also showed different predictors of mutation risk across continents. In Australian families, ⩾2 patients with MPM, median age at melanoma diagnosis ⩽40 years and ⩾6 patients with melanoma in a family jointly predicted the mutation risk. In European families, all four factors concurrently predicted the risk, but with less stringent criteria than in Australia. In North American families, only ⩾1 patient with MPM and age at diagnosis ⩽40 years simultaneously predicted the mutation risk. Conclusions: The variation in CDKN2A mutations for the four features across continents is consistent with the lower melanoma incidence rates in Europe and higher rates of sporadic melanoma in Australia. The lack of a pancreatic cancer–CDKN2A mutation relationship in Australia probably reflects the divergent spectrum of mutations in families from Australia versus those from North America and Europe. GenoMEL is exploring candidate host, genetic and/or environmental risk factors to better understand the variation observed.


Nature | 2011

The landscape of recombination in African Americans

Anjali G. Hinch; Arti Tandon; Nick Patterson; Yunli Song; Nadin Rohland; C. Palmer; Gary K. Chen; Kai Wang; Sarah G. Buxbaum; Ermeg L. Akylbekova; Melinda C. Aldrich; Christine B. Ambrosone; Christopher I. Amos; Elisa V. Bandera; Sonja I. Berndt; Leslie Bernstein; William J. Blot; Cathryn H. Bock; Eric Boerwinkle; Qiuyin Cai; Neil E. Caporaso; Graham Casey; L. Adrienne Cupples; Sandra L. Deming; W. Ryan Diver; Jasmin Divers; Myriam Fornage; Elizabeth M. Gillanders; Joseph T. Glessner; Curtis C. Harris

Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P value < 10−245). We identify a 17-base-pair DNA sequence motif that is enriched in these hotspots, and is an excellent match to the predicted binding target of PRDM9 alleles common in West Africans and rare in Europeans. Sites of this motif are predicted to be risk loci for disease-causing genomic rearrangements in individuals carrying these alleles. More generally, this map provides a resource for research in human genetic variation and evolution.


Nature Genetics | 2008

Common sequence variants on 20q11.22 confer melanoma susceptibility

Kevin M. Brown; Stuart Macgregor; Grant W. Montgomery; David Craig; Zhen Zhen Zhao; Kelly Iyadurai; Anjali K. Henders; Nils Homer; Megan J. Campbell; Mitchell S. Stark; Shane Thomas; Helen Schmid; Elizabeth A. Holland; Elizabeth M. Gillanders; David L. Duffy; Judith A. Maskiell; Jodie Jetann; Megan Ferguson; Dietrich A. Stephan; Anne E. Cust; David C. Whiteman; Adèle C. Green; Håkan Olsson; Susana Puig; Paola Ghiorzo; Johan Hansson; Florence Demenais; Alisa M. Goldstein; Nelleke A. Gruis; David E. Elder

We conducted a genome-wide association pooling study for cutaneous melanoma and performed validation in samples totaling 2,019 cases and 2,105 controls. Using pooling, we identified a new melanoma risk locus on chromosome 20 (rs910873 and rs1885120), with replication in two further samples (combined P < 1 × 10−15). The per allele odds ratio was 1.75 (1.53, 2.01), with evidence for stronger association in early-onset cases.


Nature Genetics | 2001

Experimentally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies

Julie A. Douglas; Michael Boehnke; Elizabeth M. Gillanders; Jeffrey M. Trent; Stephen B. Gruber

The study of complex genetic traits in humans is limited by the expense and difficulty of ascertaining populations of sufficient sample size to detect subtle genetic contributions to disease. Here we introduce an application of a somatic cell hybrid construction strategy called conversion that maximizes the genotypic information from each sampled individual. The approach permits direct observation of individual haplotypes, thereby eliminating the need for collecting and genotyping DNA from family members for haplotype-based analyses. We describe experimental data that validate the use of conversion as a whole-genome haplotyping tool and evaluate the theoretical efficiency of using conversion-derived haplotypes instead of conventional genotypes in the context of haplotype-frequency estimation. We show that, particularly when phenotyping is expensive, conversion-based haplotyping can be more efficient and cost-effective than standard genotyping.


Nature Genetics | 2011

Genome-wide association study identifies three new melanoma susceptibility loci

Jennifer H. Barrett; Mark M. Iles; Mark Harland; John C. Taylor; Joanne F. Aitken; Per Arne Andresen; Lars A. Akslen; Bruce K. Armstrong; M.-F. Avril; Esther Azizi; Bert Bakker; Wilma Bergman; Giovanna Bianchi-Scarrà; Brigitte Bressac-de Paillerets; Donato Calista; Lisa A. Cannon-Albright; Eve Corda; Anne E. Cust; Tadeusz Dȩbniak; David L. Duffy; Alison M. Dunning; Douglas F. Easton; Eitan Friedman; Pilar Galan; Paola Ghiorzo; Graham G. Giles; Johan Hansson; Marko Hocevar; Veronica Höiom; John L. Hopper

We report a genome-wide association study for melanoma that was conducted by the GenoMEL Consortium. Our discovery phase included 2,981 individuals with melanoma and 1,982 study-specific control individuals of European ancestry, as well as an additional 6,426 control subjects from French or British populations, all of whom were genotyped for 317,000 or 610,000 single-nucleotide polymorphisms (SNPs). Our analysis replicated previously known melanoma susceptibility loci. Seven new regions with at least one SNP with P < 10−5 and further local imputed or genotyped support were selected for replication using two other genome-wide studies (from Australia and Texas, USA). Additional replication came from case-control series from the UK and The Netherlands. Variants at three of the seven loci replicated at P < 10−3: an SNP in ATM (rs1801516, overall P = 3.4 × 10−9), an SNP in MX2 (rs45430, P = 2.9 × 10−9) and an SNP adjacent to CASP8 (rs13016963, P = 8.6 × 10−10). A fourth locus near CCND1 remains of potential interest, showing suggestive but inconclusive evidence of replication (rs1485993, overall P = 4.6 × 10−7 under a fixed-effects model and P = 1.2 × 10−3 under a random-effects model). These newly associated variants showed no association with nevus or pigmentation phenotypes in a large British case-control series.

Collaboration


Dive into the Elizabeth M. Gillanders's collaboration.

Top Co-Authors

Avatar

Jeffrey M. Trent

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joan E. Bailey-Wilson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Leah E. Mechanic

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William B. Isaacs

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek Gildea

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Freas-Lutz

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge