Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth M. Jaffee is active.

Publication


Featured researches published by Elizabeth M. Jaffee.


Advances in Immunology | 1999

Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance.

Francesco M. Marincola; Elizabeth M. Jaffee; Daniel J. Hicklin; Soldano Ferrone

Publisher Summary It is known for some time that malignant transformation of human cells may be associated with the appearance of tumor associated antigens (TAA). Decades of research have been aimed at the identification of TAA that can serve as targets for the immunotherapy of malignant diseases. The dramatic progress in the understanding of molecular basis of target cell recognition by cytotoxic T lymphocytes (CTL) has provided the background to design effective strategies to identify TAA recognized by CTL on tumor cells. The extensive application of these strategies by a number of investigators has resulted in the identification of various families of TAA on various types of solid tumors. Mouse tumor models have played an important role in elucidating the mechanisms by which the immune system interacts with tumor cells and eradicates cancer. The second line of evidence is represented by the phenomenon of a “mixed response.” A mixed response occurs rather frequently in patients with metastases, although its actual frequency is not documented. Mixed responses are characterized by the different behavior of synchronous metastases in response to T cell-based immunotherapy. This important finding suggests that TAA-specific CTL may be present in some cancer patients but are unable to attack tumor cells due to the presence of inhibitory receptors.


Science | 2009

Exomic Sequencing Identifies PALB2 as a Pancreatic Cancer Susceptibility Gene

Siân Jones; Ralph H. Hruban; Mihoko Kamiyama; Michael Borges; Xiaosong Zhang; D. Williams Parsons; Jimmy Lin; Emily Palmisano; Kieran Brune; Elizabeth M. Jaffee; Christine A. Iacobuzio-Donahue; Anirban Maitra; Giovanni Parmigiani; Scott E. Kern; Victor E. Velculescu; Kenneth W. Kinzler; Bert Vogelstein; James R. Eshleman; Michael Goggins; Alison P. Klein

Through complete sequencing of the protein-coding genes in a patient with familial pancreatic cancer, we identified a germline, truncating mutation in PALB2 that appeared responsible for this patients predisposition to the disease. Analysis of 96 additional patients with familial pancreatic cancer revealed three distinct protein-truncating mutations, thereby validating the role of PALB2 as a susceptibility gene for pancreatic cancer. PALB2 mutations have been previously reported in patients with familial breast cancer, and the PALB2 protein is a binding partner for BRCA2. These results illustrate that complete, unbiased sequencing of protein-coding genes can lead to the identification of a gene responsible for a hereditary disease.


Journal of Clinical Oncology | 2001

Novel Allogeneic Granulocyte-Macrophage Colony-Stimulating Factor–Secreting Tumor Vaccine for Pancreatic Cancer: A Phase I Trial of Safety and Immune Activation

Elizabeth M. Jaffee; Ralph H. Hruban; Barbara Biedrzycki; Daniel A. Laheru; Karen G. Schepers; Patricia R. Sauter; Marti Goemann; Joanne Coleman; Louise B. Grochow; Ross C. Donehower; Keith D. Lillemoe; Seamus O'Reilly; Ross A. Abrams; Drew M. Pardoll; John L. Cameron; Charles J. Yeo

PURPOSE Allogeneic granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor vaccines can cure established tumors in the mouse, but their efficacy against human tumors is uncertain. We have developed a novel GM-CSF-secreting pancreatic tumor vaccine. To determine its safety and ability to induce antitumor immune responses, we conducted a phase I trial in patients with surgically resected adenocarcinoma of the pancreas. PATIENTS AND METHODS Fourteen patients with stage 1, 2, or 3 pancreatic adenocarcinoma were enrolled. Eight weeks after pancreaticoduodenectomy, three patients received 1 x 10(7) vaccine cells, three patients received 5 x 10(7) vaccine cells, three patients received 10 x 10(7) vaccine cells, and five patients received 50 x 10(7) vaccine cells. Twelve of 14 patients then went on to receive a 6-month course of adjuvant radiation and chemotherapy. One month after completing adjuvant treatment, six patients still in remission received up to three additional monthly vaccinations with the same vaccine dose that they had received originally. RESULTS No dose-limiting toxicities were encountered. Vaccination induced increased delayed-type hypersensitivity (DTH) responses to autologous tumor cells in three patients who had received >or= 10 x 10(7) vaccine cells. These three patients also seemed to have had an increased disease-free survival time, remaining disease-free at least 25 months after diagnosis. CONCLUSION Allogeneic GM-CSF-secreting tumor vaccines are safe in patients with pancreatic adenocarcinoma. This vaccine approach seems to induce dose-dependent systemic antitumor immunity as measured by increased postvaccination DTH responses against autologous tumors. Further clinical evaluation of this approach in patients with pancreatic cancer is warranted.


Advances in Immunology | 2006

Mechanisms of Immune Evasion by Tumors

Charles G. Drake; Elizabeth M. Jaffee; Drew M. Pardoll

In the past decade, basic studies in animal models have begun to elucidate the physiological barriers which impede a successful antitumor immune response. These barriers operate at a number of levels, and involve the tumor, the tumor microenvironment and various components of the innate and adaptive immune systems. In this review, we discuss the multiple mechanisms by which tumors evade an immune response, with an emphasis on clinically relevant strategies to overcome these inhibitory checkpoints.


Nature | 2000

Compromised HOXA5 function can limit p53 expression in human breast tumours

Venu Raman; Shelby A. Martensen; David Reisman; Ella Evron; Ward F. Odenwald; Elizabeth M. Jaffee; Jeffrey R. Marks; Saraswati Sukumar

Expression of the p53 gene protects cells against malignant transformation. Whereas control of p53 degradation has been a subject of intense scrutiny, little is known about the factors that regulate p53 synthesis. Here we show that p53 messenger RNA levels are low in a large proportion of breast tumours. Seeking potential regulators of p53 transcription, we found consensus HOX binding sites in the p53 promoter. Transient transfection of Hox/HOXA5 activated the p53 promoter. Expression of HOXA5 in epithelial cancer cells expressing wild-type p53, but not in isogenic variants lacking the p53 gene, led to apoptotic cell death. Moreover, breast cancer cell lines and patient tumours display a coordinate loss of p53 and HOXA5 mRNA and protein expression. The HOXA5 promoter region was methylated in 16 out of 20 p53-negative breast tumour specimens. We conclude that loss of expression of p53 in human breast cancer may be primarily due to lack of expression of HOXA5.


American Journal of Pathology | 2003

Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays

Christine A. Iacobuzio-Donahue; Anirban Maitra; Mari N. Olsen; Anson W. Lowe; N. Tjarda van Heek; Christophe Rosty; Kim Walter; Norihiro Sato; Antony R. Parker; Raheela Ashfaq; Elizabeth M. Jaffee; Byungwoo Ryu; Jessa Jones; James R. Eshleman; Charles J. Yeo; John L. Cameron; Scott E. Kern; Ralph H. Hruban; Patrick O. Brown; Michael Goggins

Pancreatic cancer is the fifth leading cause of cancer death in the United States. We used cDNA microarrays to analyze global gene expression patterns in 14 pancreatic cancer cell lines, 17 resected infiltrating pancreatic cancer tissues, and 5 samples of normal pancreas to identify genes that are differentially expressed in pancreatic cancer. We found more than 400 cDNAs corresponding to genes that were differentially expressed in the pancreatic cancer tissues and cell lines as compared to normal pancreas. These genes that tended to be expressed at higher levels in pancreatic cancers were associated with a variety of processes, including cell-cell and cell-matrix interactions, cytoskeletal remodeling, proteolytic activity, and Ca(++) homeostasis. Two prominent clusters of genes were related to the high rates of cellular proliferation in pancreatic cancer cell lines and the host desmoplastic response in the resected pancreatic cancer tissues. Of 149 genes identified as more highly expressed in the pancreatic cancers compared with normal pancreas, 103 genes have not been previously reported in association with pancreatic cancer. The expression patterns of 14 of these highly expressed genes were validated by either immunohistochemistry or reverse transcriptase-polymerase chain reaction as being expressed in pancreatic cancer. The overexpression of one gene in particular, 14-3-3 sigma, was found to be associated with aberrant hypomethylation in the majority of pancreatic cancers analyzed. The genes and expressed sequence tags presented in this study provide clues to the pathobiology of pancreatic cancer and implicate a large number of potentially new molecular markers for the detection and treatment of pancreatic cancer.


Journal of Experimental Medicine | 2005

Recruitment of latent pools of high-avidity CD8+ T cells to the antitumor immune response

Anne M. Ercolini; Brian H. Ladle; Elizabeth A. Manning; Lukas W. Pfannenstiel; Todd D. Armstrong; Jean Pascal H Machiels; Joan Glick Bieler; Leisha A. Emens; R. Todd Reilly; Elizabeth M. Jaffee

A major barrier to successful antitumor vaccination is tolerance of high-avidity T cells specific to tumor antigens. In keeping with this notion, HER-2/neu (neu)-targeted vaccines, which raise strong CD8+ T cell responses to a dominant peptide (RNEU420-429) in WT FVB/N mice and protect them from a neu-expressing tumor challenge, fail to do so in MMTV-neu (neu-N) transgenic mice. However, treatment of neu-N mice with vaccine and cyclophosphamide-containing chemotherapy resulted in tumor protection in a proportion of mice. This effect was specifically abrogated by the transfer of neu-N–derived CD4+CD25+ T cells. RNEU420-429-specific CD8+ T cells were identified only in neu-N mice given vaccine and cyclophosphamide chemotherapy which rejected tumor challenge. Tetramer-binding studies demonstrated that cyclophosphamide pretreatment allowed the activation of high-avidity RNEU420-429-specific CD8+ T cells comparable to those generated from vaccinated FVB/N mice. Cyclophosphamide seemed to inhibit regulatory T (T reg) cells by selectively depleting the cycling population of CD4+CD25+ T cells in neu-N mice. These findings demonstrate that neu-N mice possess latent pools of high-avidity neu-specific CD8+ T cells that can be recruited to produce an effective antitumor response if T reg cells are blocked or removed by using approaches such as administration of cyclophosphamide before vaccination.


Journal of Experimental Medicine | 2004

Mesothelin-specific CD8+ T Cell Responses Provide Evidence of In Vivo Cross-Priming by Antigen-Presenting Cells in Vaccinated Pancreatic Cancer Patients

Amy Morck Thomas; Lynn M. Santarsiero; Eric R. Lutz; Todd D. Armstrong; Yi Cheng Chen; Lan Qing Huang; Daniel A. Laheru; Michael Goggins; Ralph H. Hruban; Elizabeth M. Jaffee

Tumor-specific CD8+ T cells can potentially be activated by two distinct mechanisms of major histocompatibility complex class I–restricted antigen presentation as follows: direct presentation by tumor cells themselves or indirect presentation by professional antigen-presenting cells (APCs). However, controversy still exists as to whether indirect presentation (the cross-priming mechanism) can contribute to effective in vivo priming of tumor-specific CD8+ T cells that are capable of eradicating cancer in patients. A clinical trial of vaccination with granulocyte macrophage–colony stimulating factor–transduced pancreatic cancer lines was designed to test whether cross-presentation by locally recruited APCs can activate pancreatic tumor-specific CD8+ T cells. Previously, we reported postvaccination delayed-type hypersensitivity (DTH) responses to autologous tumor in 3 out of 14 treated patients. Mesothelin is an antigen demonstrated previously by gene expression profiling to be up-regulated in most pancreatic cancers. We report here the consistent induction of CD8+ T cell responses to multiple HLA-A2, A3, and A24-restricted mesothelin epitopes exclusively in the three patients with vaccine-induced DTH responses. Importantly, neither of the vaccinating pancreatic cancer cell lines expressed HLA-A2, A3, or A24. These results provide the first direct evidence that CD8 T cell responses can be generated via cross-presentation by an immunotherapy approach designed to recruit APCs to the vaccination site.


Immunity | 2000

Enhanced Antigen-Specific Antitumor Immunity with Altered Peptide Ligands that Stabilize the MHC-Peptide-TCR Complex

Jill Slansky; Frédérique Rattis; Lisa F. Boyd; Tarek M. Fahmy; Elizabeth M. Jaffee; Jonathan P. Schneck; David H. Margulies; Drew M. Pardoll

T cell responsiveness to an epitope is affected both by its affinity for the presenting MHC molecule and the affinity of the MHC-peptide complex for TCR. One limitation of cancer immunotherapy is that natural tumor antigens elicit relatively weak T cell responses, in part because high-affinity T cells are rendered tolerant to these antigens. We report here that amino acid substitutions in a natural MHC class I-restricted tumor antigen that increase the stability of the MHC-peptide-TCR complex are significantly more potent as tumor vaccines. The improved immunity results from enhanced in vivo expansion of T cells specific for the natural tumor epitope. These results indicate peptides that stabilize the MHC-peptide-TCR complex may provide superior antitumor immunity through enhanced stimulation of specific T cells.


European Journal of Immunology | 2003

Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy.

Falk Nimmerjahn; Slavoljub Milosevic; Uta Behrends; Elizabeth M. Jaffee; Drew M. Pardoll; Georg W. Bornkamm; Josef Mautner

Biochemical and functional studies have demonstrated major histocompatibility complex (MHC) class II‐restricted presentation of peptides derived from cytosolic proteins, but the underlying processing and presentation pathways have remained elusive. Here we show that endogenous presentation of an epitope derived from the cytosolic protein neomycin phosphotransferase II (NeoR) on MHC classII is mediated by autophagy. This presentation pathway involves the sequestration of NeoR into autophagosomes, and subsequent delivery into the lytic compartment. These results identify endosomes/lysosomes as the processing compartment for cytosolic antigens and furthermore link endogenous antigen presentation on MHC class II with the process of cellular protein turnover by autophagy.

Collaboration


Dive into the Elizabeth M. Jaffee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph H. Hruban

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Dung T. Le

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Lei Zheng

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric R. Lutz

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph M. Herman

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge