Elizabeth M Starbuck
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth M Starbuck.
Brain Research | 2002
Michael J Morris; Wendy L Wilson; Elizabeth M Starbuck; Douglas A. Fitts
Two circumventricular organs, the subfornical organ (SFO) and organum vasculosum laminae terminalis (OVLT), may mediate salt appetite in response to acute intravenous infusions of angiotensin (ANG) II. Fluid intakes and mean arterial pressures were measured in rats with sham lesions or electrolytic lesions of the SFO or OVLT during an intravenous infusion of 30 ng/min ANG II. Beginning 21 h before the 90-min infusion, the rats were depleted of sodium with furosemide and given a total of 300 mg/kg captopril in 75 ml/kg water in three spaced gavages to block the usual salt appetite and to hydrate the rats. No other food or fluids were available for ingestion. Sham-lesioned rats drank 9.3+/-1.2 ml if 0.3 M NaCl alone was available and drank 8.9+/-1.6 ml of saline and 3.7+/-1.6 ml of water if both were available. Either SFO or OVLT lesions reduced the intakes of saline to <5 ml in both conditions and of water to <1 ml. Mean arterial pressure did not differ among the groups and was maintained above 100 mmHg after the depletion and captopril treatments because of the large doses of water. Thus, a full expression of salt appetite in response to an acute intravenous infusion of ANG II requires the integrity of both the SFO and OVLT.
Physiology & Behavior | 2001
Alexandra Ruhf; Elizabeth M Starbuck; Douglas A. Fitts
A depletion of sodium may increase sodium intake by increasing the synthesis of angiotensin (ANG) II in the blood and by stimulating ANG II receptors in the subfornical organ (SFO) of the rat. Lesions of SFO reportedly reduce these intakes. The present experiments tested the effects of SFO lesions on salt appetite after three successive depletions. After a furosemide-induced natriuresis, Long-Evans rats had free access to water- and sodium-deficient diet for 22 h. Water and 0.3 M NaCl were given for 2 h, and then the rats received regular chow, water, and 0.3 M NaCl until the next injection 5 or 7 days later. SFO lesions reduced water intake 1-2 h after each furosemide injection but not during the overnight periods. The lesions did not affect salt appetite the next day, 24-26 h after furosemide, but they did prevent the expected increase in the chronic daily 0.3 M NaCl intake after repeated depletions. The second experiment was similar to the first except that three subcutaneous injections of 100 mg/kg captopril were given at 1, 18, and 20 h after furosemide for the second depletion only. After the first depletion, the results were similar to those of the same condition of the first experiment. After the second depletion, captopril greatly reduced water intake and salt appetite in all rats including those with SFO lesions. Thus, we found that the lesion reduced chronic intake, but we did not replicate results showing large effects of SFO lesions on acute salt appetite. This residual acute appetite after SFO lesion remains dependent on the synthesis of ANG II.
Brain Research | 1998
Elizabeth M Starbuck; Douglas A. Fitts
This study examined the hypothesis that the subfornical organ (SFO), a circumventricular organ with both osmosensitive elements and dipsogenic receptors for circulating angiotensin (ANG) II, is important for the water drinking response that follows an intragastric (ig) load of hypertonic NaCl. A 2-ml saline load was administered ig at 300, 900, or 1200 mOsm/kg to rats with sham lesions or lesions of the SFO, and intake was measured periodically for 2 h. Hypertonic loads caused sham-lesioned rats, but not SFO-lesioned rats, to drink earlier in the test or to drink more water than did the isotonic load. Inhibition of ANG II synthesis in unoperated rats with 100 mg/kg of captopril reduced water intake only during the initial 15 min after a gavage of 1200 mOsm/kg saline. Loads of 900 and 1200 mOsm/kg both increased plasma osmolality and sodium concentration by 15 min after gavage without greatly affecting hematocrit or plasma protein concentration. Thus, the SFO is important for the osmotically-induced water drinking response after acute ig administration of hypertonic saline. With the possible exception of the first 15 min, this drinking response is independent of the peripheral synthesis of ANG II.
Brain Research | 2002
Elizabeth M Starbuck; Wendy L Wilson; Douglas A. Fitts
If receptors in the gut relay information about increases in local osmolality to the brain via the vagus nerve, then vagotomy should diminish this signaling and reduce both thirst and brain Fos-like immunoreactivity (Fos-ir). Water intake in response to hypertonic saline (i.p. or i.g., 1 M NaCl, 1% BW; i.g., 0.6 M NaCl, 0.5% BW) was reduced during 120 min in rats with subdiaphragmatic vagotomy (VGX) compared to sham-VGX rats. Brain Fos-ir was examined in response to both i.g. loads. After the smaller load, VGX greatly reduced Fos-ir in the supraoptic nucleus (SON) and the magnocellular and parvocellular areas of the paraventricular nucleus (PVN). Fos-ir in the subfornical organ (SFO) and nucleus of the solitary tract (NTS) was not affected. After the larger load, VGX significantly reduced Fos-ir in the parvocellular PVN and in the NTS, but not in the other regions. Thus, decreased water intake by VGX rats was accompanied by decreased Fos-ir in the parvocellular PVN after the same treatments, indicating a role for the abdominal vagus in thirst in response to signaling from gut osmoreceptors. The decreased water intake in the VGX group was not reflected as a decrease in Fos-ir in the SFO. Absorption of the larger i.g. load may have activated Fos-ir through more rapidly increasing systemic osmolality, thereby obscuring a role for the vagus at this dose in the SON and magnocellular PVN.
Behavioral Neuroscience | 1997
Elizabeth M Starbuck; Jeannine R Lane; Douglas A. Fitts
The authors tested whether the level of hydration after furosemide diuresis and 22 hr of sodium depletion affects the amount of water or 0.3 M NaCl solution consumed by rats with intact brains or with lesions of the subfornical organ (SFO). Rats received 2 (underhydrated) or 10 (euhydrated) ml/kg water by gavage as the only fluid input 2, 4, and 20 hr after 10 mg/kg furosemide. These hydration treatments had little or no effect on the amount of saline consumed in 2 hr by intact rats. SFO lesions reduced water intake regardless of hydration condition. Euhydrated, SFO-lesioned rats drank a normal amount of saline, but underhydrated, lesioned rats drank less saline than any other group. Thus, euhydration may facilitate salt appetite in SFO-lesioned rats, and the deficits in salt appetite noted in SFO-lesioned rats may result from deficits in water ingestion rather than from a destruction of angiotensin II receptor sites that directly provoke salt appetite.
Brain Research | 2002
Elizabeth M Starbuck; Douglas A. Fitts
The subfornical organ (SFO) may act as a sodium- or osmoreceptor that drives hypothalamic and other nuclei to secrete vasopressin and to elicit drinking. However, in response to mild doses of hypertonic saline, Fos-like immunoreactivity (Fos-ir) is absent in the SFO whereas it is well expressed in the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. This suggests that the hypothalamus may be activated in advance of the SFO. In this study, the fibers connecting the SFO and hypothalamus were disconnected by a wire knife cut so that Fos-ir could be examined in both the SFO and hypothalamus after an intragastric (ig) load of 0.5% of body weight of 0.6 M NaCl. Compared with Fos-ir in isotonic-loaded rats, Fos-ir after the hypertonic load was not significantly elevated in the SFO or median preoptic nucleus in sham-cut or knife-cut rats and was only slightly elevated in the OVLT in sham-cut rats. However, the hypertonic load in sham-cut rats greatly elevated Fos-ir in the SON and in the entire PVN, but this expression was reduced significantly by 30-50% in knife-cut rats. Thus, the connectivity between SFO and the hypothalamus is critical for the full expression of Fos-ir in the hypothalamus during moderate ig hypertonic saline loading even when the SFO itself does not yet express Fos-ir.
Behavioural Brain Research | 2002
Wendy L Wilson; Elizabeth M Starbuck; Douglas A. Fitts
Circumventricular organs such as the subfornical organ (SFO) may mediate the effects of circulating angiotensin (ANG) II on salt appetite under conditions of sodium depletion in the rat. We studied the effects of an electrolytic lesion of SFO on salt appetite after adrenalectomy (ADX) in Long-Evans rats. The SFO lesion had no effect on saline intake, but it did abolish water intake after acute peripheral treatments with 2 mg/kg of captopril or a 10 mg/kg of furosemide. These findings contrast with other recent data from this laboratory demonstrating large reductions in salt appetite in adrenal-intact rats with lesions of either SFO or the organum vasculosum laminae terminalis during acute iv infusions of ANG II. Thus, the SFO may contribute to the salt appetite response to circulating ANG II, but it is not essential for the response to adrenalectomy.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1999
Douglas A. Fitts; Jeannine R Lane; Elizabeth M Starbuck; Chi-Pei Li
After a chronic ligation of the common bile duct (BDL), Long-Evans rats are hypotensive and have elevated saline intake during both sodium-depleted and nondepleted conditions. We tested whether BDL rats have exaggerated hypotension during sodium depletion or an elevated dipsogenic response to angiotensin II (ANG II) that might help to explain the saline intake. After 4 wk of BDL, rats were hypotensive at baseline and developed exaggerated hypotension during acute furosemide-induced diuresis. Without saline to drink, BDL rats increased water intake during depletion equal to sham-ligated rats. However, with saline solution available at 22 h after sodium depletion, the BDL rats drank more water and saline than did sham-ligated rats. This rapid intake temporarily increased their mean arterial pressure to equal that of sham-ligated rats. Intravenous infusion of ANG II induced equal drinking responses despite reduced pressor responses in the BDL rats relative to sham-ligated rats during both ad libitum and sodium-depleted conditions. Thus BDL rats have exaggerated hypotension during diuresis, and their hypotension is corrected by drinking an exaggerated volume of saline, but they do not have an increased drinking response to ANG II.After a chronic ligation of the common bile duct (BDL), Long-Evans rats are hypotensive and have elevated saline intake during both sodium-depleted and nondepleted conditions. We tested whether BDL rats have exaggerated hypotension during sodium depletion or an elevated dipsogenic response to angiotensin II (ANG II) that might help to explain the saline intake. After 4 wk of BDL, rats were hypotensive at baseline and developed exaggerated hypotension during acute furosemide-induced diuresis. Without saline to drink, BDL rats increased water intake during depletion equal to sham-ligated rats. However, with saline solution available at 22 h after sodium depletion, the BDL rats drank more water and saline than did sham-ligated rats. This rapid intake temporarily increased their mean arterial pressure to equal that of sham-ligated rats. Intravenous infusion of ANG II induced equal drinking responses despite reduced pressor responses in the BDL rats relative to sham-ligated rats during both ad libitum and sodium-depleted conditions. Thus BDL rats have exaggerated hypotension during diuresis, and their hypotension is corrected by drinking an exaggerated volume of saline, but they do not have an increased drinking response to ANG II.
Pharmacology, Biochemistry and Behavior | 1997
Jeannine R Lane; Elizabeth M Starbuck; Douglas A. Fitts
The effect of a ligation of the common bile duct (BDL) on the chronic free-selection intake of ethanol was investigated. Rats were given a choice between water and a solution of either 6% (v/v) ethanol, 0.06% (w/v) sodium saccharin, or a mixture of both ethanol and saccharin. In different experiments, solutions were first presented either 3 weeks before surgery, about the time of surgery, or 2 weeks after surgery. Reductions in ethanol or saccharin intake were observed in BDL rats whenever the solutions were first presented either 3 weeks before or shortly after the surgery. No differences attributable to BDL were seen when ethanol solutions were first presented 2 weeks after surgery. The contingent nature of the effect suggests that the reduction results from a conditioned taste aversion rather than from differences in ethanol metabolism, sensitivity, or neurohormones such as angiotensin. The findings urge caution in the monitoring of the dietary habits of patients with a rapidly developing biliary obstruction.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2000
Douglas A. Fitts; Elizabeth M Starbuck; Alexandra Ruhf