Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Nickerson is active.

Publication


Featured researches published by Elizabeth Nickerson.


Nature | 2005

Genome sequencing in microfabricated high-density picolitre reactors

Marcel Margulies; Michael Egholm; William E. Altman; Said Attiya; Joel S. Bader; Lisa A. Bemben; Jan Berka; Michael S. Braverman; Yi-Ju Chen; Zhoutao Chen; Scott Dewell; Lei Du; Joseph M. Fierro; Xavier V. Gomes; Brian Godwin; Wen He; Scott Helgesen; Chun He Ho; Gerard P. Irzyk; Szilveszter C. Jando; Maria L. I. Alenquer; Thomas P. Jarvie; Kshama B. Jirage; Jong-Bum Kim; James Knight; Janna R. Lanza; John H. Leamon; Steven M. Lefkowitz; Ming Lei; Jing Li

The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.


Nature | 2013

Mutational heterogeneity in cancer and the search for new cancer-associated genes.

Michael S. Lawrence; Petar Stojanov; Paz Polak; Gregory V. Kryukov; Kristian Cibulskis; Andrey Sivachenko; Scott L. Carter; Chip Stewart; Craig H. Mermel; Steven A. Roberts; Adam Kiezun; Peter S. Hammerman; Aaron McKenna; Yotam Drier; Lihua Zou; Alex H. Ramos; Trevor J. Pugh; Nicolas Stransky; Elena Helman; Jaegil Kim; Carrie Sougnez; Lauren Ambrogio; Elizabeth Nickerson; Erica Shefler; Maria L. Cortes; Daniel Auclair; Gordon Saksena; Douglas Voet; Michael S. Noble; Daniel DiCara

Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour–normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.


Cell | 2012

A Landscape of Driver Mutations in Melanoma

Eran Hodis; Ian R. Watson; Gregory V. Kryukov; Stefan T. Arold; Marcin Imielinski; Jean Philippe Theurillat; Elizabeth Nickerson; Daniel Auclair; Liren Li; Chelsea S. Place; Daniel DiCara; Alex H. Ramos; Michael S. Lawrence; Kristian Cibulskis; Andrey Sivachenko; Douglas Voet; Gordon Saksena; Nicolas Stransky; Robert C. Onofrio; Wendy Winckler; Kristin Ardlie; Nikhil Wagle; Jennifer A. Wargo; Kelly K. Chong; Donald L. Morton; Katherine Stemke-Hale; Guo Chen; Michael S. Noble; Matthew Meyerson; John E. Ladbury

Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.


Nature | 2012

Melanoma genome sequencing reveals frequent PREX2 mutations

Michael F. Berger; Eran Hodis; Timothy P. Heffernan; Yonathan Lissanu Deribe; Michael S. Lawrence; Alexei Protopopov; Elena S Ivanova; Ian R. Watson; Elizabeth Nickerson; Papia Ghosh; Hailei Zhang; Rhamy Zeid; Xiaojia Ren; Kristian Cibulskis; Andrey Sivachenko; Nikhil Wagle; Antje Sucker; Carrie Sougnez; Robert C. Onofrio; Lauren Ambrogio; Daniel Auclair; Timothy Fennell; Scott L. Carter; Yotam Drier; Petar Stojanov; Meredith A. Singer; Douglas Voet; Rui Jing; Gordon Saksena; Jordi Barretina

Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5–55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)—a PTEN-interacting protein and negative regulator of PTEN in breast cancer—as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.


Nature Medicine | 2006

Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing

Roman K. Thomas; Elizabeth Nickerson; Jan Fredrik Simons; Pasi A. Jänne; Torstein Tengs; Yuki Yuza; Levi A. Garraway; Thomas LaFramboise; Jeffrey C. Lee; Kinjal Shah; Keith O'Neill; Hidefumi Sasaki; Neal I. Lindeman; Kwok-Kin Wong; Ana M. Borras; Edward J. Gutmann; Konstantin H. Dragnev; Ralph DeBiasi; Tzu Hsiu Chen; Karen A. Glatt; Heidi Greulich; Brian Desany; Christine Lubeski; William Brockman; Pablo Alvarez; Stephen K. Hutchison; John H. Leamon; Michael T. Ronan; Gregory S. Turenchalk; Michael Egholm

The sensitivity of conventional DNA sequencing in tumor biopsies is limited by stromal contamination and by genetic heterogeneity within the cancer. Here, we show that microreactor-based pyrosequencing can detect rare cancer-associated sequence variations by independent and parallel sampling of multiple representatives of a given DNA fragment. This technology can thereby facilitate accurate molecular diagnosis of heterogeneous cancer specimens and enable patient selection for targeted cancer therapies. NOTE: In the version of this article initially published, it should have been acknowledged that Jan F. Simons, in addition to Roman K. Thomas and Elizabeth Nickerson, contributed equally to this work. The error has been corrected in the HTML and PDF versions of the article.


Nature | 2014

Landscape of genomic alterations in cervical carcinomas

Akinyemi I. Ojesina; Lee Lichtenstein; Samuel S. Freeman; Chandra Sekhar Pedamallu; Ivan Imaz-Rosshandler; Trevor J. Pugh; Andrew D. Cherniack; Lauren Ambrogio; Kristian Cibulskis; Bjørn Enge Bertelsen; Sandra Romero-Cordoba; Victor Trevino; Karla Vazquez-Santillan; Alberto Salido Guadarrama; Alexi A. Wright; Mara Rosenberg; Fujiko Duke; Bethany Kaplan; Rui Wang; Elizabeth Nickerson; Heather M. Walline; Michael S. Lawrence; Chip Stewart; Scott L. Carter; Aaron McKenna; Iram P. Rodriguez-Sanchez; Magali Espinosa-Castilla; Kathrine Woie; Line Bjørge; Elisabeth Wik

Cervical cancer is responsible for 10–15% of cancer-related deaths in women worldwide. The aetiological role of infection with high-risk human papilloma viruses (HPVs) in cervical carcinomas is well established. Previous studies have also implicated somatic mutations in PIK3CA, PTEN, TP53, STK11 and KRAS as well as several copy-number alterations in the pathogenesis of cervical carcinomas. Here we report whole-exome sequencing analysis of 115 cervical carcinoma–normal paired samples, transcriptome sequencing of 79 cases and whole-genome sequencing of 14 tumour–normal pairs. Previously unknown somatic mutations in 79 primary squamous cell carcinomas include recurrent E322K substitutions in the MAPK1 gene (8%), inactivating mutations in the HLA-B gene (9%), and mutations in EP300 (16%), FBXW7 (15%), NFE2L2 (4%), TP53 (5%) and ERBB2 (6%). We also observe somatic ELF3 (13%) and CBFB (8%) mutations in 24 adenocarcinomas. Squamous cell carcinomas have higher frequencies of somatic nucleotide substitutions occurring at cytosines preceded by thymines (Tp*C sites) than adenocarcinomas. Gene expression levels at HPV integration sites were statistically significantly higher in tumours with HPV integration compared with expression of the same genes in tumours without viral integration at the same site. These data demonstrate several recurrent genomic alterations in cervical carcinomas that suggest new strategies to combat this disease.


Nature Genetics | 2013

Somatic mutation of CDKN1B in small intestine neuroendocrine tumors

Joshua M. Francis; Adam Kiezun; Alex H. Ramos; Stefano Serra; Chandra Sekhar Pedamallu; Zhi Rong Qian; Michaela S. Banck; Rahul Kanwar; Amit A. Kulkarni; Anna Karpathakis; Veronica E. Manzo; Tanupriya Contractor; Juliet Philips; Elizabeth Nickerson; Nam H. Pho; Susanne M. Hooshmand; Lauren K. Brais; Michael S. Lawrence; Trevor J. Pugh; Aaron McKenna; Andrey Sivachenko; Kristian Cibulskis; Scott L. Carter; Akinyemi I. Ojesina; Samuel S. Freeman; Robert T. Jones; Douglas Voet; Gordon Saksena; Daniel Auclair; Robert C. Onofrio

The diagnosed incidence of small intestine neuroendocrine tumors (SI-NETs) is increasing, and the underlying genomic mechanisms have not yet been defined. Using exome- and genome-sequence analysis of SI-NETs, we identified recurrent somatic mutations and deletions in CDKN1B, the cyclin-dependent kinase inhibitor gene, which encodes p27. We observed frameshift mutations of CDKN1B in 14 of 180 SI-NETs, and we detected hemizygous deletions encompassing CDKN1B in 7 out of 50 SI-NETs, nominating p27 as a tumor suppressor and implicating cell cycle dysregulation in the etiology of SI-NETs.


Journal of Medical Genetics | 2012

Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome

Fernando Jose Martinez; Jeong Ho Lee; Ji Eun Lee; Sandra Blanco; Elizabeth Nickerson; Stacey Gabriel; Michaela Frye; Lihadh Al-Gazali; Joseph G. Gleeson

Background Dubowitz syndrome (DS) is an autosomal recessive disorder characterized by the constellation of mild microcephaly, growth and mental retardation, eczema and peculiar facies. Over 140 cases have been reported, but the genetic basis is not understood. Methods We enrolled a multiplex consanguineous family from the United Arab Emirates with many of the key clinical features of DS as reported in previous series. The family was analyzed by whole exome sequencing. RNA splicing was evaluated with reverse-transcriptase PCR, immunostaining and western blotting was performed with specific antibodies, and site-specific cytosine-5-methylation was studied with bisulfite sequencing. Results We identified a homozygous splice mutation in the NSUN2 gene, encoding a conserved RNA methyltransferase. The mutation abolished the canonical splice acceptor site of exon 6, leading to use of a cryptic splice donor within an AluY and subsequent mRNA instability. Patient cells lacked NSUN2 protein and there was resultant loss of site-specific 5-cytosine methylation of the tRNA(Asp GTC) at C47 and C48, known NSUN2 targets. Conclusion Our findings establish NSUN2 as the first causal gene with relationship to the DS spectrum phenotype. NSUN2 has been implicated in Myc-induced cell proliferation and mitotic spindle stability, which might help explain the varied clinical presentation in DS that can include chromosomal instability and immunological defects.


European Journal of Human Genetics | 2013

Phenotypic spectrum and prevalence of INPP5E mutations in Joubert Syndrome and related disorders

Lorena Travaglini; Francesco Brancati; Jennifer L. Silhavy; Miriam Iannicelli; Elizabeth Nickerson; Nadia Elkhartoufi; Eric Scott; Emily Spencer; Stacey Gabriel; Sophie Thomas; Bruria Ben-Zeev; Enrico Bertini; Eugen Boltshauser; Malika Chaouch; Maria Roberta Cilio; Mirjam M. de Jong; Hülya Kayserili; Gonul Ogur; Andrea Poretti; Sabrina Signorini; Graziella Uziel; Maha S. Zaki; Colin A. Johnson; Tania Attié-Bitach; Joseph G. Gleeson; Enza Maria Valente

Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain–hindbrain malformation known as the ‘molar tooth sign’. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.


American Journal of Human Genetics | 2013

Whole-Exome Sequencing Identifies Mutated C12orf57 in Recessive Corpus Callosum Hypoplasia

Naiara Akizu; Nuri M. Shembesh; Tawfeg Ben-Omran; Laila Bastaki; Asma A. Al-Tawari; Maha S. Zaki; Roshan Koul; Emily Spencer; Rasim Ozgur Rosti; Eric Scott; Elizabeth Nickerson; Stacey Gabriel; Gilberto da Gente; Jiang Li; Matthew A. Deardorff; Laura K. Conlin; Margaret A. Horton; Elaine H. Zackai; Elliott H. Sherr; Joseph G. Gleeson

The corpus callosum is the principal cerebral commissure connecting the right and left hemispheres. The development of the corpus callosum is under tight genetic control, as demonstrated by abnormalities in its development in more than 1,000 genetic syndromes. We recruited more than 25 families in which members affected with corpus callosum hypoplasia (CCH) lacked syndromic features and had consanguineous parents, suggesting recessive causes. Exome sequence analysis identified C12orf57 mutations at the initiator methionine codon in four different families. C12orf57 is ubiquitously expressed and encodes a poorly annotated 126 amino acid protein of unknown function. This protein is without significant paralogs but has been tightly conserved across evolution. Our data suggest that this conserved gene is required for development of the human corpus callosum.

Collaboration


Dive into the Elizabeth Nickerson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron McKenna

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge