Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth P. Murchison is active.

Publication


Featured researches published by Elizabeth P. Murchison.


Science | 2007

A microRNA Feedback Circuit in Midbrain Dopamine Neurons

Jongpil Kim; Keiichi Inoue; Jennifer Ishii; William B. Vanti; Sergey V. Voronov; Elizabeth P. Murchison; Gregory J. Hannon; Asa Abeliovich

MicroRNAs (miRNAs) are evolutionarily conserved, 18- to 25-nucleotide, non–protein coding transcripts that posttranscriptionally regulate gene expression during development. miRNAs also occur in postmitotic cells, such as neurons in the mammalian central nervous system, but their function is less well characterized. We investigated the role of miRNAs in mammalian midbrain dopaminergic neurons (DNs). We identified a miRNA, miR-133b, that is specifically expressed in midbrain DNs and is deficient in midbrain tissue from patients with Parkinsons disease. miR-133b regulates the maturation and function of midbrain DNs within a negative feedback circuit that includes the paired-like homeodomain transcription factor Pitx3. We propose a role for this feedback circuit in the fine-tuning of dopaminergic behaviors such as locomotion.


Nature Structural & Molecular Biology | 2008

A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases

Roberta Benetti; Susana Gonzalo; Isabel Jaco; Purificación Muñoz; Susana Gonzalez; Stefan Schoeftner; Elizabeth P. Murchison; Thomas Andl; Taiping Chen; Peter Klatt; En Li; Manuel Serrano; Sarah E. Millar; Gregory J. Hannon; Maria A. Blasco

Dicer initiates RNA interference by generating small RNAs involved in various silencing pathways. Dicer participates in centromeric silencing, but its role in the epigenetic regulation of other chromatin domains has not been explored. Here we show that Dicer1 deficiency in Mus musculus leads to decreased DNA methylation, concomitant with increased telomere recombination and telomere elongation. These DNA-methylation defects correlate with decreased expression of Dnmt1, Dnmt3a and Dnmt3b DNA methyltransferases (Dnmts), and methylation levels can be recovered by their overexpression. We identify the retinoblastoma-like 2 protein (Rbl2) as responsible for decreased Dnmt expression in Dicer1-null cells, suggesting the existence of Dicer-dependent small RNAs that target Rbl2. We identify the miR-290 cluster as being downregulated in Dicer1-deficient cells and show that it silences Rbl2, thereby controlling Dnmt expression. These results identify a pathway by which miR-290 directly regulates Rbl2-dependent Dnmt expression, indirectly affecting telomere-length homeostasis.


Cell | 2015

Enhancer Evolution across 20 Mammalian Species

Diego Villar; Camille Berthelot; Sarah Aldridge; Tim F. Rayner; Margus Lukk; Miguel Pignatelli; Thomas J. Park; Robert Deaville; Jonathan Thor Erichsen; Anna J. Jasinska; James M. A. Turner; Mads F. Bertelsen; Elizabeth P. Murchison; Paul Flicek; Duncan T. Odom

Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution.


Development | 2008

miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex

Davide De Pietri Tonelli; Jeremy N. Pulvers; Christiane Haffner; Elizabeth P. Murchison; Gregory J. Hannon; Wieland B. Huttner

Neurogenesis during the development of the mammalian cerebral cortex involves a switch of neural stem and progenitor cells from proliferation to differentiation. To explore the possible role of microRNAs (miRNAs) in this process, we conditionally ablated Dicer in the developing mouse neocortex using Emx1-Cre, which is specifically expressed in the dorsal telencephalon as early as embryonic day (E) 9.5. Dicer ablation in neuroepithelial cells, which are the primary neural stem and progenitor cells, and in the neurons derived from them, was evident from E10.5 onwards, as ascertained by the depletion of the normally abundant miRNAs miR-9 and miR-124. Dicer ablation resulted in massive hypotrophy of the postnatal cortex and death of the mice shortly after weaning. Analysis of the cytoarchitecture of the Dicer-ablated cortex revealed a marked reduction in radial thickness starting at E13.5, and defective cortical layering postnatally. Whereas the former was due to neuronal apoptosis starting at E12.5, which was the earliest detectable phenotype, the latter reflected dramatic impairment of neuronal differentiation. Remarkably, the primary target cells of Dicer ablation, the neuroepithelial cells, and the neurogenic progenitors derived from them, were unaffected by miRNA depletion with regard to cell cycle progression, cell division, differentiation and viability during the early stage of neurogenesis, and only underwent apoptosis starting at E14.5. Our results support the emerging concept that progenitors are less dependent on miRNAs than their differentiated progeny, and raise interesting perspectives as to the expansion of somatic stem cells.


Cell | 2012

Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer

Elizabeth P. Murchison; Ole Schulz-Trieglaff; Zemin Ning; Ludmil B. Alexandrov; Markus J. Bauer; Beiyuan Fu; Matthew M. Hims; Zhihao Ding; Sergii Ivakhno; Caitlin Stewart; Bee Ling Ng; Wendy Wong; Bronwen Aken; Simon White; Amber E. Alsop; Jennifer Becq; Graham R. Bignell; R. Keira Cheetham; William Cheng; Thomas Richard Connor; Anthony J. Cox; Zhi-Ping Feng; Yong Gu; Russell Grocock; Simon R. Harris; Irina Khrebtukova; Zoya Kingsbury; Mark Kowarsky; Alexandre Kreiss; Shujun Luo

Summary The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PaperClip


Oncogene | 2008

Clonally transmissible cancers in dogs and Tasmanian devils

Elizabeth P. Murchison

Tasmanian devil facial tumor disease (DFTD) and canine transmissible venereal tumor (CTVT) are the only known naturally occurring clonally transmissible cancers. These cancers are transmitted by the physical transfer of viable tumor cells that can be transplanted across histocompatibility barriers into unrelated hosts. Despite their common etiology, DFTD and CTVT have evolved independently and have unique life histories and host adaptations. DFTD is a recently emerged aggressive facial tumor that is threatening the Tasmanian devil with extinction. CTVT is a sexually transmitted tumor of dogs that has a worldwide distribution and that probably arose thousands of years ago. By contrasting the biology, molecular genetics and immunology of these two unusual cancers, I highlight the common and unique features of clonally transmissible cancers, and discuss the implications of clonally transmissible cancers for host-pathogen evolution.


Science | 2014

Transmissible Dog Cancer Genome Reveals the Origin and History of an Ancient Cell Lineage

Elizabeth P. Murchison; David C. Wedge; Ludmil B. Alexandrov; Beiyuan Fu; Inigo Martincorena; Zemin Ning; Jose M. C. Tubio; Emma I. Werner; Jan Allen; Andrigo Barboza De Nardi; Edward M. Donelan; G. Marino; Ariberto Fassati; Peter J. Campbell; Fengtang Yang; Austin Burt; Robin A. Weiss; Michael R. Stratton

Canine transmissible venereal tumor (CTVT) is the oldest known somatic cell lineage. It is a transmissible cancer that propagates naturally in dogs. We sequenced the genomes of two CTVT tumors and found that CTVT has acquired 1.9 million somatic substitution mutations and bears evidence of exposure to ultraviolet light. CTVT is remarkably stable and lacks subclonal heterogeneity despite thousands of rearrangements, copy-number changes, and retrotransposon insertions. More than 10,000 genes carry nonsynonymous variants, and 646 genes have been lost. CTVT first arose in a dog with low genomic heterozygosity that may have lived about 11,000 years ago. The cancer spawned by this individual dispersed across continents about 500 years ago. Our results provide a genetic identikit of an ancient dog and demonstrate the robustness of mammalian somatic cells to survive for millennia despite a massive mutation burden. An unusual tumor in dogs arose more than 10,000 years ago, and despite a huge mutational burden, its genome has remained stable.[Also see Perspective by Parker and Ostrander] Breaking Tumor Dogma Canine transmissible venereal tumor (CTVT) is an unusual form of cancer because the infectious agent is not a virus or bacterium but the tumor cells themselves, which are passed from one dog to another during coitus. To explore the molecular features of the tumor and its possible origins, Murchison et al. (p. 437; see the Perspective by Parker and Ostrander) sequenced the genomes of two CTVTs and their host dogs, one from Australia and one from Brazil. Although CTVT has acquired a massive number of genomic alterations, including hundreds of times more somatic mutations than are normally found in human cancers, the tumor cell genome has remained diploid and stable. Indeed, CTVT may first have arisen in a dog that lived more than 10,000 years ago.


eLife | 2016

Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer

Andrea Strakova; Máire Ní Leathlobhair; Guo-Dong Wang; Ting-Ting Yin; Ilona Airikkala-Otter; Janice L Allen; Karen M Allum; Leontine Bansse-Issa; Jocelyn L Bisson; Artemio Castillo Domracheva; Karina Ferreira de Castro; Anne M Corrigan; Hugh R Cran; Jane T Crawford; Stephen M Cutter; Laura Delgadillo Keenan; Edward M. Donelan; Ibikunle A Faramade; Erika Flores Reynoso; Eleni Fotopoulou; Skye N Fruean; Fanny Gallardo-Arrieta; Olga Glebova; Rodrigo F Häfelin Manrique; Joaquim Jgp Henriques; Natalia Ignatenko; Debbie Koenig; Marta Lanza-Perea; Remo Lobetti; Adriana M Lopez Quintana

Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution. DOI: http://dx.doi.org/10.7554/eLife.14552.001


Proceedings of the National Academy of Sciences of the United States of America | 2016

A second transmissible cancer in Tasmanian devils

Ruth J. Pye; David Pemberton; Cesar Tovar; Jose M. C. Tubio; Karen Dun; Samantha Fox; Jocelyn Darby; Dane Hayes; Graeme W. Knowles; Alexandre Kreiss; Hannah V. Siddle; Kate Swift; A. Bruce Lyons; Elizabeth P. Murchison; Gm Woods

Significance Transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. Only three transmissible cancers have been reported in nature, suggesting that such diseases emerge rarely. One of the known transmissible cancers affects Tasmanian devils, and is threatening this species with extinction. Here we report the discovery of a second transmissible cancer in Tasmanian devils. This cancer causes facial tumors that are grossly indistinguishable from those caused by the first-described transmissible cancer in this species; however, tumors derived from this second clone are genetically distinct. These findings indicate that Tasmanian devils have spawned at least two different transmissible cancers, and suggest that transmissible cancers may arise more frequently in nature than previously considered. Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.


PLOS Genetics | 2012

Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour

Janine E. Deakin; Hannah S. Bender; Anne-Maree Pearse; Willem Rens; Patricia C. M. O'Brien; Malcolm A. Ferguson-Smith; Yuanyuan Cheng; Katrina Morris; Robyn Taylor; Andrew Stuart; Katherine Belov; Chris T. Amemiya; Elizabeth P. Murchison; Anthony T. Papenfuss; Jennifer A. Marshall Graves

Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the worlds largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD.

Collaboration


Dive into the Elizabeth P. Murchison's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gm Woods

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Cesar Tovar

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

Zemin Ning

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Anthony T. Papenfuss

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Hannah S. Bender

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge