Elizabeth Payne
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth Payne.
International Journal of Cancer | 2004
Su Ing Hii; Lani Hardy; Tania Crough; Elizabeth Payne; Karen Grimmett; Devinder Gill; Nigel A.J. McMillan
There are a number of observations that suggest the dsRNA‐activated protein kinase, PKR, may play an active role in formation and maintenance of leukemia, including nonrandom chromosomal deletions in acute leukemia as well as truncations and deletions of the PKR gene in some leukemia cell lines. However, there is little direct evidence from patient material that this is so. Here we show that full‐length PKR is present but not active in 21 of 28 patient samples from B‐cell chronic lymphocytic leukemia (B‐CLL). PKR from these patients was unable to auto‐activate or phosphorylate substrates but was able to bind dsRNA. Furthermore, the lack of PKR activation was not due to differing levels of the PKR activator, PACT nor of the PKR inhibitor, p58IPK. We compared PKR status with clinical parameters and disease staging. No differences were found between the 2 groups in terms of staging (modified Rai or Binet), age, CD38 status, p53 status, 11q23 deletion status or CEP12 deletion status. However, there was a significant correlation between deletion in 13q14.3 and lack of PKR activity. We show that B‐CLL cells appear to contain a soluble inhibitor of PKR, as lysates from cells lacking PKR activity were able to inhibit exogenous PKR in mixing experiments. Finally, we show suppression of PKR activity was still present following ultrafilitration through a 10,000 Da cutoff filter but was lost upon extraction with phenol/chloroform or by high salt washing. This data suggests loss of PKR activity may contribute to the formation and/or maintenance of CLL.
Journal of Virology | 2001
Elizabeth Payne; Mark R. Bowles; Alistair Don; John F. Hancock; Nigel A.J. McMillan
ABSTRACT The initial step in viral infection is the attachment of the virus to the host cell via an interaction with its receptor. We have previously shown that a receptor for human papillomavirus is the α6 integrin. The α6 integrin is involved in the attachment of epithelial cells with the basement membrane, but recent evidence suggests that ligation of many integrins results in intracellular signaling events that influence cell proliferation. Here we present evidence that exposure of A431 human epithelial cells to human papillomavirus type 6b L1 virus-like particles (VLPs) results in a dose-dependent increase in cell proliferation, as measured by bromodeoxyuridine incorporation. This proliferation is lost if VLPs are first denatured or incubated with a monoclonal antibody against L1 protein. The MEK1 inhibitor PB98059 inhibits the VLP-mediated increase in cell proliferation, suggesting involvement of the Ras-MAP kinase pathway. Indeed, VLP binding results in rapid phosphorylation of the β4 integrin upon tyrosine residues and subsequent recruitment of the adapter protein Shc to β4. Within 30 min, the activation of Ras, Raf, and Erk2 was observed. Finally, the upregulation of c-myc mRNA was observed at 60 min. These data indicate that human papillomavirus type 6b is able to signal cells via the Ras-MAP kinase pathway to induce cell proliferation. We hypothesize that such a mechanism would allow papillomaviruses to infect hosts more successfully by increasing the potential pool of cells they are able to infect via the initiation of proliferation in resting keratinocyte stem and suprabasal cells.
Journal of Biological Chemistry | 2009
Puji Astuti; Tanya Pike; Charlotte Widberg; Elizabeth Payne; Angus Harding; John F. Hancock; Brian Gabrielli
Activation of the mitogen-activated protein kinase (MAPK) pathway by growth factors or phorbol esters during G2 phase delays entry into mitosis; however, the role of the MAPK pathway during G2/M progression remains controversial. Here, we demonstrate that activation of the MAPK pathway with either epidermal growth factor or 12-O-tetradecanoylphorbol-13-acetate induces a G2 phase delay independent of known G2 phase checkpoint pathways but was specifically dependent on MAPK/extracellular signal-regulated kinase kinase (MEK1). Activation of MAPK signaling also blocked exit from a G2 phase checkpoint arrest. Both the G2 phase delay and blocked exit from the G2 checkpoint arrest were mediated by the MEK1-dependent destabilization of the critical G2/M regulator cdc25B. Reintroduction of cdc25B overcame the MEK1-dependent G2 phase delay. Thus, we have demonstrated a new function for MEK1 that controls G2/M progression by regulating the stability of cdc25B. This represents a novel mechanism by which factors that activate MAPK signaling can influence the timing of entry into mitosis, particularly exit from a G2 phase checkpoint arrest.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Wenyi Gu; Melanie Cochrane; Graham R. Leggatt; Elizabeth Payne; Allison Choyce; Fang Zhou; Robert W. Tindle; Nigel A.J. McMillan
RNA interference (RNAi) for cancer treatment relies on the ability to directly kill cancer cells via down-regulation of target genes, but issues of delivery and efficacy have limited clinical adoption. Furthermore, current studies using immune-deficient animal models disregard potential interactions with the adaptive immune system. It has previously been observed that certain viral antigens appear to be more rapidly presented to the immune system than normal proteins due to the production of defective ribosomal products by the virus. Given that RNAi could potentially result in the generation of truncated mRNAs, we wondered whether a similar mechanism of immune presentation of a target gene was possible. Here we show that RNAi-cleaved mRNAs can be translated into incomplete protein, and if cleavage was downstream of cytotoxic T cell epitopes, resulted in increased presentation of target protein and the generation of a tumor-protective immune response. We show that mice inoculated with tumor cells treated with such short hairpin RNAs (shRNAs) were protected from subsequent challenge with untreated tumors. However, protection was only found if shRNAs were targeted downstream of the dominant cytotoxic T cell (CTL) epitope. Our work suggests that RNAi can alter immunity to targets and shows that not all tumor cells require direct RNAi exposure for treatment to be effective in vivo, pointing the way to a new class of RNAi-based therapy.
Placenta | 1995
A.M. Mitchell; Alpha S. Yap; Elizabeth Payne; S. W. Manley; Robin H. Mortimer
In the placenta the trophoblast cell layer separates maternal and fetal circulations and is involved in the active transport of selected substances across this barrier. We have used the JAR choriocarcinoma cell line to study aspects of trophoblast membrane transport. To determine whether JAR cells could be used in studies of vectorial transepithelial transport it was necessary to determine whether these cells were polarized and assembled tight junctions. In the present study we investigated JAR cells using a range of markers for specific cell surface domains combined with confocal laser scanning microscopy. Freshly isolated cells initially formed a confluent epithelial monolayer with recruitment of a tight junction-associated protein, ZO-1, and a cell adhesion molecule, E-cadherin, to the surface at sites of cell-cell contact. They did not, however, display cell surface polarization, as NaK-ATPase was not segregated in the basolateral domain, and a differentiated apical cell surface was not assembled. The monolayer stage was also unstable, as continued proliferation resulted in the formation of multilayered aggregates where ZO-1 and E-cadherin were lost from the cell surface. These results suggest that the JAR cell line is unlikely to be a suitable model for studies of transepithelial transport in the placenta.
Cancer Gene Therapy | 2011
Wenyi Gu; Elizabeth Payne; Surong Sun; Melinda Burgess; Nigel A.J. McMillan
RNA interference (RNAi)-based gene silencing is widely used in laboratories for gene function studies and also holds a great promise for developing treatments for diseases. However, in vivo delivery of RNAi therapy remains a key issue. Lentiviral vectors have been employed for stable gene transfer and gene therapy and therefore are expected to deliver a stable and durable RNAi therapy. But this does not seem to be true in some disease models. Here, we showed that lentivirus delivered short-hairpin RNA (shRNA) against human papillomavirus (HPV) E6/E7 oncogenes were effective for only 2 weeks in a cervical cancer model. However, using this vector to carry two copies of the same shRNA or two shRNAs targeting at two different but closely related genes (HPV E6 and vascular endothelial growth factor) was more effective at silencing the gene targets and inhibiting cell or even tumor growth than their single shRNA counterparts. The cancer cells treated with dual shRNA were also more sensitive to chemotherapeutic drugs than single shRNA-treated cells. These results suggest that a multi-shRNA strategy may be a more attractive approach for developing an RNAi therapy for this cancer.
PeerJ | 2017
Van L. T. Hoang; Xiu-Cheng Quek; Jean-Marie Tan; Elizabeth Payne; Lynlee L. Lin; Sudipta Sinnya; Anthony P. Raphael; Duncan Lambie; Marcel E. Dinger; H. Peter Soyer; Tarl W. Prow
Identification of appropriate reference genes (RGs) is critical to accurate data interpretation in quantitative real-time PCR (qPCR) experiments. In this study, we have utilised next generation RNA sequencing (RNA-seq) to analyse the transcriptome of a panel of non-melanoma skin cancer lesions, identifying genes that are consistently expressed across all samples. Genes encoding ribosomal proteins were amongst the most stable in this dataset. Validation of this RNA-seq data was examined using qPCR to confirm the suitability of a set of highly stable genes for use as qPCR RGs. These genes will provide a valuable resource for the normalisation of qPCR data for the analysis of non-melanoma skin cancer.
Journal of Interferon and Cytokine Research | 2004
Daniel Clarke; Aaron T. Irving; Eleanore H. Lambley; Elizabeth Payne; Nigel A.J. McMillan
Many viruses have evolved mechanisms to antagonize the interferon (IFN) system, targeting all the major components involved in receptor binding and signaling. Although a number of these vital proteins are homologous to cellular proteins involved in IFN downregulation (e.g., viral IFN regulatory factors [vIRFs]), many share little resemblance to known proteins. To determine the IFN-blocking properties of these proteins, functional assays are required. Here, we present a new and rapid functional screening method, based on the 2fTGH cell line, which is able to determine viral gene products that inhibit the IFN-alpha/Jak-Stat signaling pathway. Expression cloning of viral IFN-blocking genes into 2fTGH and consequent selection with IFN-alpha and 6-thioguanine result in the outgrowth of cells that are no longer responsive to IFN-alpha. We also demonstrate that selection occurs if members of the Jak-Stat signaling pathway are lost. To show the utility of our system, we have used a known suppressor of IFN signaling, the human papillomavirus (HPV) E7 gene. Expression of E7 causes the loss of ability of 2fTGH cells to respond to IFN-alpha treatment because of a functional disruption of the signaling pathway. This approach offers a new strategy for identifying novel viral genes or new functions of already described viral genes that have a role in IFN-alpha signaling inhibition.
Cellular Signalling | 2013
Tanya Pike; Charlotte Widberg; Andrew Goodall; Elizabeth Payne; Nichole Giles; John F. Hancock; Brian Gabrielli
The primary endpoint of signalling through the canonical Raf-MEK-ERK MAP kinase cascade is ERK activation. Here we report a novel signalling outcome for this pathway. Activation of the MAP kinase pathway by growth factors or phorbol esters during G2 phase results in only transient activations of ERK and p90RSK, then suppression to below control levels. A small peak of ERK and p90RSK activation in early G2 phase cells was identified, and inhibition of this delayed entry into mitosis. The previously identified, proteolytically cleaved form of MEK1 termed tMEK (truncated MEK1), is also induced with G2 phase MAPK pathway activation. We demonstrate that addition of recombinant mutants of MEK1 with an N-terminal truncation similar to that of tMEK also inhibited ERK and p90RSK activations and delayed progression into mitosis. Only catalytically inactive forms of tMEK were capable of these effects, but surprisingly, phosphorylation on the activating Ser218/222 sites was also required. A lack of MEK1 or ability to accumulate tMEK resulted in the absence of the feedback inhibition of ERK and p90RSK activations. tMEK is a novel output from the canonical MAP kinase signalling pathway, acting in a MAPK signalling-regulated dominant negative manner to inhibit ERK and p90RSK activations, acting as a dampening mechanism to reduce the magnitude or duration of MAPK pathway signalling in G2/M phase.
Journal of Virology | 1997
Magnus Evander; Elizabeth Payne; Ying Mei Qi; Kylie Hengst; Nigel A.J. McMillan