Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Pham is active.

Publication


Featured researches published by Elizabeth Pham.


Biotechnology Letters | 2006

Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.

Isaac T. S. Li; Elizabeth Pham; Kevin Truong

Genetically-coded, fluorescence resonance energy transfer (FRET) biosensors are widely used to study molecular events from single cells to whole organisms. They are unique among biosensors because of their spontaneous fluorescence and targeting specificity to both organelles and tissues. In this review, we discuss the theoretical basis of FRET with a focus on key parameters responsible for designing FRET biosensors that have the highest sensitivity. Next, we discuss recent applications that are grouped into four common biosensor design patterns—intermolecular FRET, intramolecular FRET, FRET from substrate cleavage and FRET using multiple colour fluorescent proteins. Lastly, we discuss recent progress in creating fluorescent proteins suitable for FRET purposes. Together these advances in the development of FRET biosensors are beginning to unravel the interconnected and intricate signalling processes as they are occurring in living cells and organisms.


ACS Synthetic Biology | 2012

Engineering a Photoactivated Caspase-7 for Rapid Induction of Apoptosis

Evan Mills; Xi Chen; Elizabeth Pham; Stanley Wong; Kevin Truong

Apoptosis is a cell death program involved in the development of multicellular organisms, immunity, and pathologies ranging from cancer to HIV/AIDS. We present an engineered protein that causes rapid apoptosis of targeted cells in monolayer culture after stimulation with blue light. Cells transfected with the protein switch L57V, a tandem fusion of the light-sensing LOV2 domain and the apoptosis-executing domain from caspase-7, rapidly undergo apoptosis within 60 min after light stimulation. Constant illumination of under 5 min or oscillating with 1 min exposure had no effect, suggesting that cells have natural tolerance to a short duration of caspase-7 activity. Furthermore, the overexpression of Bcl-2 prevented L57V-mediated apoptosis, suggesting that although caspase-7 activation is sufficient to start apoptosis, it requires mitochondrial contribution to fully commit.


Protein Science | 2010

TEV protease-facilitated stoichiometric delivery of multiple genes using a single expression vector

Xi Chen; Elizabeth Pham; Kevin Truong

Delivery and expression of multiple genes is an important requirement in a range of applications such as the engineering of synthetic signaling pathways and the induction of pluripotent stem cells. However, conventional approaches are often inefficient, nonstoichiometric and may limit the maximum number of genes that can be simultaneously expressed. We here describe a versatile approach for multiple gene delivery using a single expression vector by mimicking the protein expression strategy of RNA viruses. This was accomplished by first expressing the genes together with TEV protease as a single fusion protein, then proteolytically self‐cleaving the fusion protein into functional components. To demonstrate this method in E. coli cells, we analyzed the translation products using SDS‐PAGE and showed that the fusion protein was efficiently cleaved into its components, which can then be purified individually or as a binding complex. To demonstrate this method in mammalian cells, we designed a differential localization scheme and used live cell imaging to observe the distinctive subcellular targeting of the processed products. We also showed that the stoichiometry of the processed products was consistent and corresponded with the frequency of appearance of their genes on the expression vector. In summary, the efficient expression and separation of up to three genes was achieved in both E. coli and mammalian cells using a single TEV protease self‐processing vector.


Cell Calcium | 2010

Structure based design of a Ca2+-sensitive RhoA protein that controls cell morphology

Evan Mills; Elizabeth Pham; Kevin Truong

The Rho proteins are important regulators of cell morphology, and the prototypical protein RhoA is known to regulate contraction, blebbing and bleb retraction. We have identified and experimentally confirmed that RhoA has a binding site for calmodulin, a ubiquitous transducer of the Ca(2+) second messenger. Using structural modeling, a fusion protein was designed wherein RhoA activity was controlled by Ca(2+) via calmodulin. Living cells transfected with this synthetic protein underwent Ca(2+) sensitive and calmodulin-dependent bleb retraction within minutes. Further, the modularity of Ca(2+) signaling was exploited to induce bleb retraction in response to blue light (using channelrhodopsin-2) or exogenous chemicals (with acetylcholine receptor), showing input signal versatility. The widespread use of Ca(2+) signaling in nature suggests that fully exploring its signaling potential may allow powerful applications to other synthetic biological systems.


ACS Synthetic Biology | 2012

Engineered networks of synthetic and natural proteins to control cell migration.

Evan Mills; Elizabeth Pham; Seema Nagaraj; Kevin Truong

Mammalian cells reprogrammed with engineered transgenes have the potential to be useful therapeutic platforms because they can support large genetic networks, can be taken from a host or patient, and perform useful functions such as migration and secretion. Successful engineering of mammalian cells will require the development of modules that can perform well-defined, reliable functions, such as directed cell migration toward a chemical or physical signal. One inherently modular cellular pathway is the Ca(2+) signaling pathway: protein modules that mobilize and respond to Ca(2+) are combined across cell types to create complexity. We have designed a chimera of Rac1, a GTPase that controls cell morphology and migration, and calmodulin (CaM), a Ca(2+)-responsive protein, to control cell migration. The Rac1-CaM chimera (named RACer) controlled lamellipodia growth in response to Ca(2+). RACer was combined with LOVS1K (a previously engineered light-sensitive Ca(2+)-mobilizing module) and cytokine receptors to create protein networks where blue light and growth factors regulated cell morphology and, thereby, cell migration. To show the generalizability of our design, we created a Cdc42-CaM chimera that controls filopodia growth in response to Ca(2+). The insights that have been gained into Ca(2+) signaling and cell migration will allow future work to combine engineered protein systems to enable reprogrammed cell sensing of relevant therapeutic targets in vivo.


Methods of Molecular Biology | 2010

Design of Fluorescent Fusion Protein Probes

Elizabeth Pham; Kevin Truong

Many fluorescent probes depend on the fluorescence resonance energy transfer (FRET) between fluorescent protein pairs. The efficiency of energy transfer becomes altered by conformational changes of a fused sensory protein in response to a cellular event. A structure-based approach can be taken to design probes better with improved dynamic ranges by computationally modeling conformational changes and predicting FRET efficiency changes of candidate biosensor constructs. FRET biosensors consist of at least three domains fused together: the donor protein, the sensory domain, and the acceptor protein. To more efficiently subclone fusion proteins containing multiple domains, a cassette-based system can be used. Generating a cassette library of commonly used domains facilitates the rapid subcloning of future fusion biosensor proteins. FRET biosensors can then be used with fluorescence microscopy for real-time monitoring of cellular events within live cells by tracking changes in FRET efficiency. Stimulants can be used to trigger a range of cellular events including Ca(2+) signaling, apoptosis, and subcellular translocations.


Current Bioinformatics | 2008

Computational Modeling Approaches for Studying of Synthetic Biological Networks

Elizabeth Pham; Isaac T. S. Li; Kevin Truong

Synthetic biology is an emerging field that strives to build increasingly complex biological networks through the integration of molecular biology and engineering. The growth of the field has been supported by progress in the design and construction of synthetic genetic and protein networks. This has led to the possibility of assembling modular components to attain novel biological functions and tools. In addition, these synthetic networks give rise to insights that facilitate the investigation of interactions and phenomena in naturally-occurring networks. Integration of well-characterized biological components into higher order networks requires computational modeling approaches to rationally construct systems that are directed towards a desired outcome. A computational approach would improve the predictability of the underlying mechanisms that would otherwise be difficult to deduce through experimentation alone. The analysis and interpretation of both qualitative and quantitative models also becomes increasingly important towards taking a systems-level perspective on synthetic genetic and protein networks. This review will first discuss the analogy of synthetic networks to circuit engineering. It will then look at computational modeling approaches that can be applied to biological systems and how synthetic biology will help to develop more accurate in silico representations of these systems.


international conference of the ieee engineering in medicine and biology society | 2006

FPMOD: A Modeling Tool for Sampling the Conformational Space of Fusion Proteins

Jason Chiang; Isaac T. S. Li; Elizabeth Pham; Kevin Truong

Fusion proteins are an important class of proteins with diverse applications in biotechnology. They consist of 2 or more rigid domains joined by a flexible linker. Understanding the conformational space of fusion proteins conferred by the flexible linkers is important to predicting its behavior. In this paper, we introduce a modeling tool called FPMOD (Fusion Protein MODeller) which samples the conformational space of fusion proteins by treating all domains as rigid bodies and rotating each of them around their flexible linkers. As a demonstration, FPMOD was used to predict the fluorescence resonance energy transfer (FRET) efficiency of three different fusion protein biosensors. The simulation results of the FRET efficiency prediction were consistent with the in vitro experimental data, which verified that FPMOD is a valid tool to predicting the behavior of fusion proteins


Biochemical and Biophysical Research Communications | 2008

FRET evidence that an isoform of caspase-7 binds but does not cleave its substrate.

Isaac T. S. Li; Elizabeth Pham; Jason Jui-Hsuan Chiang; Kevin Truong

A caspase-7 biosensor (vDEVDc) based on FRET (fluorescence resonance energy transfer) was used to study the proteolytic properties of caspase-7, an executioner protease in cellular apoptosis. An active isoform of caspase-7 with the 56 N-terminal residues truncated (57casp7) cleaved vDEVDc at the recognition sequence, resulting in a FRET efficiency decrease of 61%. In contrast, an isoform with the 23 N-terminal residues truncated (24casp7) bound to vDEVDc but did not cleave the substrate, resulting in a FRET increase of 15%. Kinetic results showed an exponential substrate cleavage and binding curve for the 57casp7 and 24casp7 isoforms, respectively. FRET changes of the vDEVDc biosensor were also monitored in cos-7 cells upon STS-induced apoptosis. Finally, we modeled caspase-7 binding to vDEVDc and estimated a FRET emission ratio increase of 31.7%, which agrees with the 15% experimental result. We showed that two differently truncated isoforms of caspase-7 exhibit different enzymatic properties, namely binding by 24casp7 and hydrolysis by 57casp7.


Advances in Experimental Medicine and Biology | 2007

Current Approaches for Engineering Proteins with Diverse Biological Properties

Isaac T. S. Li; Elizabeth Pham; Kevin Truong

In the past two decades, protein engineering has advanced significantly with the emergence of new chemical and genetic approaches. Modification and recombination of existing proteins not only produced novel enzymes used commercially and in research laboratories, but furthermore, they revealed the mechanisms of protein function. In this chapter, we will describe the applications and significance of current protein engineering approaches.

Collaboration


Dive into the Elizabeth Pham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac T. S. Li

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi Chen

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Chiang

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge