Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth R. Gerstner is active.

Publication


Featured researches published by Elizabeth R. Gerstner.


IEEE Transactions on Medical Imaging | 2015

The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

Bjoern H. Menze; András Jakab; Stefan Bauer; Jayashree Kalpathy-Cramer; Keyvan Farahani; Justin S. Kirby; Yuliya Burren; Nicole Porz; Johannes Slotboom; Roland Wiest; Levente Lanczi; Elizabeth R. Gerstner; Marc-André Weber; Tal Arbel; Brian B. Avants; Nicholas Ayache; Patricia Buendia; D. Louis Collins; Nicolas Cordier; Jason J. Corso; Antonio Criminisi; Tilak Das; Hervé Delingette; Çağatay Demiralp; Christopher R. Durst; Michel Dojat; Senan Doyle; Joana Festa; Florence Forbes; Ezequiel Geremia

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.


Journal of Clinical Oncology | 2010

Phase II Study of Cediranib, an Oral Pan–Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor, in Patients With Recurrent Glioblastoma

Tracy T. Batchelor; Dan G. Duda; Emmanuelle di Tomaso; Marek Ancukiewicz; Scott R. Plotkin; Elizabeth R. Gerstner; April F. Eichler; Jan Drappatz; Fred H. Hochberg; Thomas Benner; David N. Louis; Kenneth Cohen; Houng Chea; Alexis Exarhopoulos; Jay S. Loeffler; Marsha A. Moses; Percy Ivy; A. Gregory Sorensen; Patrick Y. Wen; Rakesh K. Jain

PURPOSE Glioblastoma is an incurable solid tumor characterized by increased expression of vascular endothelial growth factor (VEGF). We performed a phase II study of cediranib in patients with recurrent glioblastoma. METHODS Cediranib, an oral pan-VEGF receptor tyrosine kinase inhibitor, was administered (45 mg/d) until progression or unacceptable toxicity to patients with recurrent glioblastoma. The primary end point was the proportion of patients alive and progression free at 6 months (APF6). We performed magnetic resonance imaging (MRI) and plasma and urinary biomarker evaluations at multiple time points. RESULTS Thirty-one patients with recurrent glioblastoma were accrued. APF6 after cediranib was 25.8%. Radiographic partial responses were observed by MRI in 17 (56.7%) of 30 evaluable patients using three-dimensional measurements and in eight (27%) of 30 evaluable patients using two-dimensional measurements. For the 15 patients who entered the study taking corticosteroids, the dose was reduced (n = 10) or discontinued (n = 5). Toxicities were manageable. Grade 3/4 toxicities included hypertension (four of 31; 12.9%); diarrhea (two of 31; 6.4%); and fatigue (six of 31; 19.4%). Fifteen (48.4%) of 31 patients required at least one dose reduction and 15 patients required temporary drug interruptions due to toxicity. Drug interruptions were not associated with outcome. Changes in plasma placental growth factor, basic fibroblast growth factor, matrix metalloproteinase (MMP) -2, soluble VEGF receptor 1, stromal cell-derived factor-1alpha, and soluble Tek/Tie2 receptor and in urinary MMP-9/neutrophil gelatinase-associated lipocalin activity after cediranib were associated with radiographic response or survival. CONCLUSION Cediranib monotherapy for recurrent glioblastoma is associated with encouraging proportions of radiographic response, 6-month progression-free survival, and a steroid-sparing effect with manageable toxicity. We identified early changes in circulating molecules as potential biomarkers of response to cediranib. The efficacy of cediranib and the predictive value of these candidate biomarkers will be explored in prospective trials.


Science Translational Medicine | 2012

Detection of 2-Hydroxyglutarate in IDH-Mutated Glioma Patients by In Vivo Spectral-Editing and 2D Correlation Magnetic Resonance Spectroscopy

Ovidiu C. Andronesi; Grace S. Kim; Elizabeth R. Gerstner; Tracy T. Batchelor; A. Aria Tzika; Valeria Fantin; Matthew G. Vander Heiden; A. Gregory Sorensen

2-Hydroxyglutarate, a metabolite overproduced in IDH-mutated gliomas, can be detected noninvasively in patients with brain tumors by optimized magnetic resonance spectroscopy. Spectroscopy Gets Inside Your Head Gliomas are diffuse brain tumors that are difficult to diagnose, with outcomes that are nearly impossible to predict—unless you can sample the diseased tissue itself via biopsy. This invasive procedure is typically performed at the time of surgery, with results available only after several weeks. Normally, it is a good thing that people can’t “see” inside your head; but, for gliomas, Andronesi and coauthors have found it to be beneficial by noninvasively imaging the brain to identify a glioma gene mutation that is correlated with patient survival. Mutations in the enzyme isocitrate dehydrogenase (IDH) lead to the accumulation of the metabolite 2-hydroxyglutarate (2HG). This mutation has been found in up to 86% of grade II to IV gliomas. Patients with IDH1 gene mutations have a greater 5-year survival rate than do patients with wild-type IDH1 gliomas, suggesting that such mutations could be used for prognosis. Andronesi et al. developed a strategy to detect IDH1 mutations in patients with glioma using magnetic resonance spectroscopy (MRS) imaging of 2HG. The similarity of 2HG to other metabolites, such as glutamate and glutamine, precludes detection with traditional one-dimensional spectroscopy; however, two-dimensional MRS allowed the authors to see the presence of 2HG in the brains of two glioma patients with IDH1 mutations, but not in healthy volunteers with wild-type IDH. The method was further validated ex vivo in tissue biopsies. With these results and those in the companion study by Elkhaled et al. (also in this issue), the authors show that in vivo brain imaging for genotyping cancer patients is a possibility—one that would avoid invasive clinical procedures and help doctors not only predict cancer outcomes but also effectively treat tumors on the basis of grade and genetic makeup. Mutations in the gene isocitrate dehydrogenase 1 (IDH1) are present in up to 86% of grade II and III gliomas and secondary glioblastoma. Arginine 132 (R132) mutations in the enzyme IDH1 result in excess production of the metabolite 2-hydroxyglutarate (2HG), which could be used as a biomarker for this subset of gliomas. Here, we use optimized in vivo spectral-editing and two-dimensional (2D) correlation magnetic resonance spectroscopy (MRS) methods to unambiguously detect 2HG noninvasively in glioma patients with IDH1 mutations. By comparison, fitting of conventional 1D MR spectra can provide false-positive readouts owing to spectral overlap of 2HG and chemically similar brain metabolites, such as glutamate and glutamine. 2HG was also detected using 2D high-resolution magic angle spinning MRS performed ex vivo on a separate set of glioma biopsy samples. 2HG detection by in vivo or ex vivo MRS enabled detailed molecular characterization of a clinically important subset of human gliomas. This has implications for diagnosis as well as monitoring of treatments targeting mutated IDH1.


Journal of Clinical Oncology | 2007

Increased Permeability of the Blood-Brain Barrier to Chemotherapy in Metastatic Brain Tumors: Establishing a Treatment Paradigm

Elizabeth R. Gerstner; Robert L. Fine

There is no accepted standard of care for the chemotherapy treatment of metastatic brain tumors, which has been generally limited to lipophilic alkylators, which may not have efficacy against the tumor that metastasized to the brain. More than 50% of chemotherapy agents are natural product drugs, which are rarely used in the treatment of metastatic brain tumors because they are thought to not cross the blood-brain barrier (BBB). A major protein constituent in the BBB is P-glycoprotein (P-gp), which pumps natural product chemotherapy drugs and toxins out of the CNS. However, P-gp expression in the neovasculature of metastatic brain tumors is similar to the P-gp expression in the neovasculature of the primary, extracranial tumor. In contrast, gliomas have higher P-gp expression in their neovasculature, similar to the greater intrinsic expression of P-gp in normal brain vasculature. This decreased immunohistochemical expression of P-gp in the neovasculature of metastatic tumors, as well as our recent pharmacologic demonstration of increased tissue concentrations of paclitaxel in metastatic brain tumors compared with gliomas, support the idea that the choice of chemotherapy agents should be based on the histologic origin of the metastatic brain tumor and not on the lipophilicity of the drug. Our hypothesis is that metastatic brain tumors from tumors with intrinsically low P-gp expression (eg, lung, melanoma, and untreated breast) may be more permeable to natural product chemotherapy drugs than gliomas. This information could lead to a paradigm shift in the use of natural product drugs for metastatic brain tumors.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation

Tracy T. Batchelor; Elizabeth R. Gerstner; Kyrre E. Emblem; Dan G. Duda; Jayashree Kalpathy-Cramer; Matija Snuderl; Marek Ancukiewicz; Pavlina Polaskova; Marco C. Pinho; Dominique Jennings; Scott R. Plotkin; Andrew S. Chi; April F. Eichler; Jorg Dietrich; Fred H. Hochberg; Christine Lu-Emerson; A. John Iafrate; S. Percy Ivy; Bruce R. Rosen; Jay S. Loeffler; Patrick Y. Wen; A. Greg Sorensen; Rakesh K. Jain

Significance This study demonstrates that antiangiogenic therapy increases tumor blood perfusion in a subset of newly diagnosed glioblastoma patients, and that it is these patients who survive longer when this expensive and potentially toxic therapy is combined with standard radiation and chemotherapy. This study provides fresh insights into the selection of glioblastoma patients most likely to benefit from antiangiogenic treatments. Antiangiogenic therapy has shown clear activity and improved survival benefit for certain tumor types. However, an incomplete understanding of the mechanisms of action of antiangiogenic agents has hindered optimization and broader application of this new therapeutic modality. In particular, the impact of antiangiogenic therapy on tumor blood flow and oxygenation status (i.e., the role of vessel pruning versus normalization) remains controversial. This controversy has become critical as multiple phase III trials of anti-VEGF agents combined with cytotoxics failed to show overall survival benefit in newly diagnosed glioblastoma (nGBM) patients and several other cancers. Here, we shed light on mechanisms of nGBM response to cediranib, a pan-VEGF receptor tyrosine kinase inhibitor, using MRI techniques and blood biomarkers in prospective phase II clinical trials of cediranib with chemoradiation vs. chemoradiation alone in nGBM patients. We demonstrate that improved perfusion occurs only in a subset of patients in cediranib-containing regimens, and is associated with improved overall survival in these nGBM patients. Moreover, an increase in perfusion is associated with improved tumor oxygenation status as well as with pharmacodynamic biomarkers, such as changes in plasma placenta growth factor and sVEGFR2. Finally, treatment resistance was associated with elevated plasma IL-8 and sVEGFR1 posttherapy. In conclusion, tumor perfusion changes after antiangiogenic therapy may distinguish responders vs. nonresponders early in the course of this expensive and potentially toxic form of therapy, and these results may provide new insight into the selection of glioblastoma patients most likely to benefit from anti-VEGF treatments.


JAMA Neurology | 2010

Primary Central Nervous System Lymphoma

Elizabeth R. Gerstner; Tracy T. Batchelor

Primary central nervous system (CNS) lymphoma (PCNSL), an uncommon variant of extranodal non-Hodgkin lymphoma (NHL), can affect any part of the neuraxis including the eyes, brain, leptomeninges, or spinal cord. It accounts for approximately 3% of all the primary CNS tumors diagnosed each year in the United States. Congenital or acquired immunodeficiency is the only established risk factor for PCNSL, and individuals with human immunodeficiency virus (HIV) infection are at greater risk for developing this tumor. Infection with HIV likely accounted for the increased incidence in PCNSL observed from 1970 to 2000, but over the last decade the number of cases of PCNSL has stabilized or decreased to about 0.47 cases per 100 000 persons. Owing to the rarity of PCNSL, the disease has been challenging to study and an effective standard of care has been difficult to establish. Unfortunately, although durable remissions may be achieved for some patients with PCNSL, the tumor relapses in most cases. In this review, we will focus on PCNSL in the immunocompetent host.


Nature Reviews Clinical Oncology | 2009

VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer

Elizabeth R. Gerstner; Dan G. Duda; Emmanuelle di Tomaso; Peter A. Ryg; Jay S. Loeffler; A. Gregory Sorensen; Percy Ivy; Rakesh K. Jain; Tracy T. Batchelor

Most brain tumors oversecrete vascular endothelial growth factor (VEGF), which leads to an abnormally permeable tumor vasculature. This hyperpermeability allows fluid to leak from the intravascular space into the brain parenchyma, which causes vasogenic cerebral edema and increased interstitial fluid pressure. Increased interstitial fluid pressure has an important role in treatment resistance by contributing to tumor hypoxia and preventing adequate tumor penetration of chemotherapy agents. In addition, edema and the corticosteroids needed to control cerebral edema cause significant morbidity and mortality. Agents that block the VEGF pathway are able to decrease vascular permeability and, thus, cerebral edema, by restoring the abnormal tumor vasculature to a more normal state. Decreasing cerebral edema minimizes the adverse effects of corticosteroids and could improve clinical outcomes. Anti-VEGF agents might also be useful in other cancer-related conditions that increase vascular permeability, such as malignant pleural effusions or ascites.


Journal of Pediatric Hematology Oncology | 2000

Antineuronal antibodies in patients with neuroblastoma and paraneoplastic opsoclonus-myoclonus.

Nuno Lobo Antunes; Yasmin Khakoo; Katherine K. Matthay; Robert C. Seeger; Daniel O. Stram; Elizabeth R. Gerstner; Lauren E. Abrey; Josep Dalmau

PURPOSE To identify serologic markers in children with paraneoplastic opsoclonus-myoclonus (POM). MATERIALS AND METHODS We examined the sera of 64 children with neuroblastoma (16 with POM and 48 age-matched and stage-matched controls) by immunohistochemistry of rat brain and human cerebellum, and by Western blot analysis of protein extracts from human Purkinje cells, cortical neurons, neuroblastoma cell lines, and HuD. RESULTS Using immunohistochemistry, IgG reactivity against neurons was identified in 13 of 16 POM sera (81%), and 12 of 48 non-POM sera (25%; P<0.001). IgM antineural antibodies were present in 3 of 16 POM sera (19%) and 11 of 48 (23%) non-POM sera. Except for anti-Hu antibodies detected in 10 sera (4 with POM), no other specific reactivities were identified by Western blot analysis of neuronal or of neuroblastoma protein extracts. CONCLUSIONS We conclude that: 1) patients with neuroblastoma and POM are more likely to harbor antineuronal antibodies than patients without POM; 2) no specific serologic marker of POM was identified, but the frequent presence of antineuronal antibodies suggests that POM is immune-mediated; and 3) anti-Hu antibodies are present in some sera from patients with neuroblastoma, irrespective of the presence of POM.


Neuro-oncology | 2010

Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib

Elizabeth R. Gerstner; Poe-Jou Chen; Patrick Y. Wen; Rakesh K. Jain; Tracy T. Batchelor; Gregory A. Sorensen

To evaluate the role of apparent diffusion coefficient (ADC) imaging in assessing tumor cell infiltration after treatment with the antivascular endothelial growth factor (anti-VEGF) agent, cediranib, we prospectively analyzed diffusion MRI scans from 30 patients participating in a Phase II trial of cediranib for recurrent glioblastoma. A patient-specific threshold was selected below which ADC values were determined to be abnormally low and suggestive of tumor. We determined the percent of low ADC in the FLAIR hyperintensity surrounding the enhancing tumor and then visualized the location of these low ADC voxels. The percent volume of the FLAIR hyperintensity comprised by low ADC increased significantly from baseline (2.3%) to day 28 (2.9%), day 56 (5.0%), and day 112 (6.3%) of treatment with cediranib suggesting increasing infiltrative tumor in some patients. Visualization of the location of the low ADC voxels suggested regions of tumor growth that were not visible on contrast-enhanced MRI. ADC maps can be used to suggest regions of infiltrative tumor cells with anti-VEGF therapy and should be validated in future studies.


Neuro-oncology | 2015

Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials

Benjamin M. Ellingson; Martin Bendszus; Jerrold L. Boxerman; Daniel P. Barboriak; Bradley J. Erickson; Marion Smits; Sarah J. Nelson; Elizabeth R. Gerstner; Brian M. Alexander; Gregory Goldmacher; Wolfgang Wick; Michael A. Vogelbaum; Michael Weller; Evanthia Galanis; Jayashree Kalpathy-Cramer; Lalitha K. Shankar; Paula Jacobs; Whitney B. Pope; Dewen Yang; Caroline Chung; Michael V. Knopp; Soonme Cha; Martin van den Bent; Susan M. Chang; W. K. Al Yung; Timothy F. Cloughesy; Patrick Y. Wen; Mark R. Gilbert; Andrew Whitney; David Sandak

A recent joint meeting was held on January 30, 2014, with the US Food and Drug Administration (FDA), National Cancer Institute (NCI), clinical scientists, imaging experts, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocate groups to discuss imaging endpoints for clinical trials in glioblastoma. This workshop developed a set of priorities and action items including the creation of a standardized MRI protocol for multicenter studies. The current document outlines consensus recommendations for a standardized Brain Tumor Imaging Protocol (BTIP), along with the scientific and practical justifications for these recommendations, resulting from a series of discussions between various experts involved in aspects of neuro-oncology neuroimaging for clinical trials. The minimum recommended sequences include: (i) parameter-matched precontrast and postcontrast inversion recovery-prepared, isotropic 3D T1-weighted gradient-recalled echo; (ii) axial 2D T2-weighted turbo spin-echo acquired after contrast injection and before postcontrast 3D T1-weighted images to control timing of images after contrast administration; (iii) precontrast, axial 2D T2-weighted fluid-attenuated inversion recovery; and (iv) precontrast, axial 2D, 3-directional diffusion-weighted images. Recommended ranges of sequence parameters are provided for both 1.5 T and 3 T MR systems.

Collaboration


Dive into the Elizabeth R. Gerstner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge