Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth R. Wonderlich is active.

Publication


Featured researches published by Elizabeth R. Wonderlich.


PLOS Pathogens | 2008

HIV-1 Nef Targets MHC-I and CD4 for Degradation Via a Final Common β-COP–Dependent Pathway in T Cells

Malinda Schaefer; Elizabeth R. Wonderlich; Jeremiah F. Roeth; Jolie A. Leonard; Kathleen Collins

To facilitate viral infection and spread, HIV-1 Nef disrupts the surface expression of the viral receptor (CD4) and molecules capable of presenting HIV antigens to the immune system (MHC-I). To accomplish this, Nef binds to the cytoplasmic tails of both molecules and then, by mechanisms that are not well understood, disrupts the trafficking of each molecule in different ways. Specifically, Nef promotes CD4 internalization after it has been transported to the cell surface, whereas Nef uses the clathrin adaptor, AP-1, to disrupt normal transport of MHC-I from the TGN to the cell surface. Despite these differences in initial intracellular trafficking, we demonstrate that MHC-I and CD4 are ultimately found in the same Rab7+ vesicles and are both targeted for degradation via the activity of the Nef-interacting protein, β-COP. Moreover, we demonstrate that Nef contains two separable β-COP binding sites. One site, an arginine (RXR) motif in the N-terminal α helical domain of Nef, is necessary for maximal MHC-I degradation. The second site, composed of a di-acidic motif located in the C-terminal loop domain of Nef, is needed for efficient CD4 degradation. The requirement for redundant motifs with distinct roles supports a model in which Nef exists in multiple conformational states that allow access to different motifs, depending upon which cellular target is bound by Nef.


Journal of Biological Chemistry | 2008

The Tyrosine Binding Pocket in the Adaptor Protein 1 (AP-1) μ1 Subunit Is Necessary for Nef to Recruit AP-1 to the Major Histocompatibility Complex Class I Cytoplasmic Tail

Elizabeth R. Wonderlich; Maya Williams; Kathleen Collins

To evade the anti-human immunodeficiency virus (HIV) immune response, the HIV Nef protein disrupts major histocompatibility complex class I (MHC-I) trafficking by recruiting the clathrin adaptor protein 1 (AP-1) to the MHC-I cytoplasmic tail. Under normal conditions AP-1 binds dileucine and tyrosine signals (YXXϕ motifs) via physically separate binding sites. In the case of the Nef-MHC-I complex, a tyrosine in the human leukocyte antigen (HLA)-A2 cytoplasmic tail (320YSQA) and a methionine in Nef (Met20) are absolutely required for AP-1 binding. Also present in Nef is a dileucine motif, which does not normally affect MHC-I trafficking and is not needed to recruit AP-1 to the Nef-MHC-I-complex. However, evidence is presented here that this dileucine motif can be activated by fusing Nef to the HLA-A2 tail in cis. Thus, the inability of this motif to function in trans likely results from a structural change that occurs when Nef binds to the MHC-I cytoplasmic tail. The physiologically relevant tyrosine-dependent recruitment of AP-1 to MHC-I, which occurs whether Nef is present in cis or trans, was stabilized by the acidic and polyproline domains within Nef. Additionally, amino acids Ala324 and Asp327 in the cytoplasmic tails of HLA-A and (but not HLA-C and HLA-E) molecules also stabilized AP-1 binding. Finally, mutation of the tyrosine binding pocket in the μ subunit of AP-1 created a dominant negative inhibitor of Nef-induced down-modulation of HLA-A2 that disrupted binding of wild type AP-1 to the Nef-MHC-I complex. Thus, these data provide evidence that Nef binding to the MHC-I cytoplasmic tail stabilizes the interaction of a tyrosine in the MHC-I cytoplasmic tail with the natural tyrosine binding pocket in AP-1.


PLOS Pathogens | 2013

Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection

Muhamuda Kader; Amanda Pfaff Smith; Cristiana Guiducci; Elizabeth R. Wonderlich; Daniel P. Normolle; Simon C. Watkins; Franck J. Barrat; Simon M. Barratt-Boyes

Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology.


Journal of Virology | 2011

ADP Ribosylation Factor 1 Activity Is Required To Recruit AP-1 to the Major Histocompatibility Complex Class I (MHC-I) Cytoplasmic Tail and Disrupt MHC-I Trafficking in HIV-1-Infected Primary T Cells

Elizabeth R. Wonderlich; Jolie A. Leonard; Deanna A. Kulpa; Kay E. Leopold; Jason M. Norman; Kathleen L. Collins

ABSTRACT HIV-1-infected cells are partially resistant to anti-HIV cytotoxic T lymphocytes (CTLs) due to the effects of the HIV Nef protein on antigen presentation by major histocompatibility complex class I (MHC-I), and evidence has been accumulating that this function of Nef is important in vivo. HIV Nef disrupts the normal expression of MHC-I by stabilizing a protein-protein interaction between the clathrin adaptor protein AP-1 and the MHC-I cytoplasmic tail. There is also evidence that Nef activates a phosphatidylinositol 3 kinase (PI3K)-dependent GTPase, ADP ribosylation factor 6 (ARF-6), to stimulate MHC-I internalization. However, the relative importance of these two pathways is unclear. Here we report that a GTPase required for AP-1 activity (ARF-1) was needed for Nef to disrupt MHC-I surface levels, whereas no significant requirement for ARF-6 was observed in Nef-expressing T cell lines and in HIV-infected primary T cells. An ARF-1 inhibitor blocked the ability of Nef to recruit AP-1 to the MHC-I cytoplasmic tail, and a dominant active ARF-1 mutant stabilized the Nef–MHC-I–AP-1 complex. These data support a model in which Nef and ARF-1 stabilize an interaction between MHC-I and AP-1 to disrupt the presentation of HIV-1 epitopes to CTLs.


Journal of Immunology | 2013

Virus-Encoded TLR Ligands Reveal Divergent Functional Responses of Mononuclear Phagocytes in Pathogenic Simian Immunodeficiency Virus Infection

Elizabeth R. Wonderlich; Viskam Wijewardana; Xiangdong Liu; Simon M. Barratt-Boyes

The role of mononuclear phagocytes in the pathogenesis or control of HIV infection is unclear. In this study, we monitored the dynamics and function of dendritic cells (DC) and monocytes/macrophages in rhesus macaques acutely infected with pathogenic SIVmac251 with and without antiretroviral therapy (ART). SIV infection was associated with monocyte mobilization and recruitment of plasmacytoid DC (pDC) and macrophages to lymph nodes, which did not occur with ART treatment. SIVmac251 single-stranded RNA encoded several uridine-rich sequences that were potent TLR7/8 ligands in mononuclear phagocytes of naive animals, stimulating myeloid DC (mDC) and monocytes to produce TNF-α and pDC and macrophages to produce both TNF-α and IFN-α. Following SIV infection, pDC and monocytes/macrophages rapidly became hyporesponsive to stimulation with SIV-encoded TLR ligands and influenza virus, a condition that was reversed by ART. The loss of pDC and macrophage function was associated with a profound but transient block in the capacity of lymph node cells to secrete IFN-α upon stimulation. In contrast to pDC and monocytes/macrophages, mDC increased TNF-α production in response to stimulation following acute infection. Moreover, SIV-infected rhesus macaques with stable infection had increased mDC responsiveness to SIV-encoded TLR ligands and influenza virus at set point, whereas animals that progressed rapidly to AIDS had reduced mDC responsiveness. These findings indicate that SIV encodes immunostimulatory TLR ligands and that pDC, mDC, and monocytes/macrophages respond to these ligands differently as a function of SIV infection. The data also suggest that increased responsiveness of mDC to stimulation following SIV infection may be beneficial to the host.


Journal of Immunology | 2015

Macrophages and Myeloid Dendritic Cells Lose T Cell–Stimulating Function in Simian Immunodeficiency Virus Infection Associated with Diminished IL-12 and IFN-α Production

Elizabeth R. Wonderlich; Wen-Chi Wu; Daniel P. Normolle; Simon M. Barratt-Boyes

Impaired T cell responses are a defining characteristic of HIV infection, but the extent to which altered mononuclear phagocyte function contributes to this defect is unclear. We show that mononuclear phagocytes enriched from rhesus macaque lymph nodes have suppressed ability to stimulate CD4 T cell proliferation and IFN-γ release after acute SIV infection. When individual populations were isolated, myeloid dendritic cells (mDC) and macrophages but not plasmacytoid DC (pDC) had suppressed capacity to stimulate CD4 T cell proliferation, with macrophage function declining as infection progressed. Macrophages, but not pDC or mDC, had suppressed capacity to induce IFN-γ release from CD4 T cells in acute infection, even after stimulation with virus-encoded TLR7/8 ligand. Changes in expression of costimulatory molecules did not explain loss of function postinfection. Conversely, pDC and mDC had marked loss of IFN-α and IL-12 production, respectively, and macrophages lost production of both cytokines. In T cell cocultures without TLR7/8 ligand, macrophages were the primary source of IL-12, which was profoundly suppressed postinfection and correlated with loss of IFN-γ release by T cells. TLR7/8-stimulated pDC, mDC and macrophages all produced IL-12 in T cell cocultures, which was suppressed in chronic infection. Supplementing IL-12 enhanced mDC-driven IFN-γ release from T cells, and IL-12 and IFN-α together restored function in TLR7/8-activated macrophages. These findings reveal loss of macrophage and mDC T cell–stimulating function in lymph nodes of SIV-infected rhesus macaques associated with diminished IL-12 and IFN-α production that may be a factor in AIDS immunopathogenesis.


Immunologic Research | 2011

Dissecting the role of dendritic cells in simian immunodeficiency virus infection and AIDS.

Elizabeth R. Wonderlich; Muhamuda Kader; Viskam Wijewardana; Simon M. Barratt-Boyes

Human immunodeficiency virus (HIV) infection is associated with the loss of the two principal types of dendritic cell (DC), myeloid DC (mDC) and plasmacytoid DC (pDC), but the mechanism of this loss and its relationship to AIDS pathogenesis remain ill-defined. The nonhuman primate is a powerful model to dissect this response for several reasons. Both DC subsets have been well characterized in nonhuman primates and shown to have strikingly similar phenotypic and functional characteristics to their counterparts in the human. Moreover, decline of mDC and pDC occurs in rhesus macaques with end-stage simian immunodeficiency virus (SIV) infection, the model of HIV infection in humans. In this brief review, we discuss what is known about DC subsets in pathogenic and nonpathogenic nonhuman primate models of HIV infection and highlight the advances and controversies that currently exist in the field.


European Journal of Immunology | 2016

Macrophage accumulation in gut mucosa differentiates AIDS from chronic SIV infection in rhesus macaques

Zachary D. Swan; Elizabeth R. Wonderlich; Simon M. Barratt-Boyes

The relationship between recruitment of mononuclear phagocytes to lymphoid and gut tissues and disease in HIV and SIV infection remains unclear. To address this question, we conducted cross‐sectional analyses of dendritic cell (DC) subsets and CD163+ macrophages in lymph nodes (LNs) and ileum of rhesus macaques with acute and chronic SIV infection and AIDS. In LNs significant differences were only evident when comparing uninfected and AIDS groups, with loss of myeloid DCs and CD103+ DCs from peripheral and mesenteric LNs, respectively, and accumulation of plasmacytoid DCs and macrophages in mesenteric LNs. In contrast, there were fourfold more macrophages in ileum lamina propria in macaques with AIDS compared with chronic infection, and this increased to 40‐fold in Peyers patches. Gut macrophages exceeded plasmacytoid DCs and CD103+ DCs by ten‐ to 17‐fold in monkeys with AIDS but were at similar low frequencies as DCs in chronic infection. Gut macrophages in macaques with AIDS expressed IFN‐α and TNF‐α consistent with cell activation. CD163+ macrophages also accumulated in gut mucosa in acute infection but lacked expression of IFN‐α and TNF‐α. These data reveal a relationship between inflammatory macrophage accumulation in gut mucosa and disease and suggest a role for macrophages in AIDS pathogenesis.


Journal of Immunology | 2017

Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques

Elizabeth R. Wonderlich; Zachary D. Swan; Stephanie J. Bissel; Amy L. Hartman; Jonathan Carney; Katherine J. O’Malley; Adebimpe Obadan; Jefferson Santos; Reagan Walker; Timothy J. Sturgeon; Lonnie Frye; Pauline Maiello; Charles A. Scanga; Jennifer D. Bowling; Anthea L. Bouwer; Parichat Duangkhae; Clayton A. Wiley; JoAnne L. Flynn; Jieru Wang; Kelly Stefano Cole; Daniel R. Perez; Douglas S. Reed; Simon M. Barratt-Boyes

Human infections with highly pathogenic avian influenza A (H5N1) virus are frequently fatal but the mechanisms of disease remain ill-defined. H5N1 infection is associated with intense production of proinflammatory cytokines, but whether this cytokine storm is the main cause of fatality or is a consequence of extensive virus replication that itself drives disease remains controversial. Conventional intratracheal inoculation of a liquid suspension of H5N1 influenza virus in nonhuman primates likely results in efficient clearance of virus within the upper respiratory tract and rarely produces severe disease. We reasoned that small particle aerosols of virus would penetrate the lower respiratory tract and blanket alveoli where target cells reside. We show that inhalation of aerosolized H5N1 influenza virus in cynomolgus macaques results in fulminant pneumonia that rapidly progresses to acute respiratory distress syndrome with a fatal outcome reminiscent of human disease. Molecular imaging revealed intense lung inflammation coincident with massive increases in proinflammatory proteins and IFN-α in distal airways. Aerosolized H5N1 exposure decimated alveolar macrophages, which were widely infected and caused marked influx of interstitial macrophages and neutrophils. Extensive infection of alveolar epithelial cells caused apoptosis and leakage of albumin into airways, reflecting loss of epithelial barrier function. These data establish inhalation of aerosolized virus as a critical source of exposure for fatal human infection and reveal that direct viral effects in alveoli mediate H5N1 disease. This new nonhuman primate model will advance vaccine and therapeutic approaches to prevent and treat human disease caused by highly pathogenic avian influenza viruses.


Virulence | 2012

A dendrite in every pie: myeloid dendritic cells in HIV and SIV infection.

Elizabeth R. Wonderlich; Simon M. Barratt-Boyes

Dendritic cells (DC) are a heterogeneous population of innate immune cells that are fundamental to initiating responses against invading pathogens and regulating immune responses. Myeloid DC (mDC) act as a bridge between the innate and adaptive immune response during virus infections but their role in immunity to human immunodeficiency virus (HIV) remains ill-defined. This review examines aspects of the mDC response to HIV and its simian counterpart, simian immunodeficiency virus (SIV), and emphasizes areas where our knowledge of mDC biology and function is incomplete. Defining the potentially beneficial and detrimental roles mDC play during pathogenic and stable infection of humans and nonhuman primates is crucial to our overall understanding of AIDS pathogenesis.

Collaboration


Dive into the Elizabeth R. Wonderlich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy L. Hartman

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muhamuda Kader

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge