Elizabeth Ratcliffe
Loughborough University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth Ratcliffe.
British Medical Bulletin | 2011
Elizabeth Ratcliffe; Robert J. Thomas; David J. Williams
BACKGROUND A novel manufacturing industry is emerging to translate unique cellular therapy bioprocesses to robust, scaled manufacturing production for successful clinical translation. SOURCE OF DATA This review summarizes key translational issues, and current and future perspectives to improve translation of cell-based therapy bioprocessing, based on literature search and author research. AREAS OF AGREEMENT It is widely recognized that cell-based therapies could revolutionize health care for a range of diseases, and that there are gaps in the overarching framework and technologies to generate clinical success. AREAS OF CONTROVERSY There is limited understanding of how to fulfil requirements as regulatory and manufacturing guidelines are incomplete and few have achieved commercialization. GROWING POINTS Recent developments are encouraging adoption of automation and quality engineering approaches for bioprocessing of cell-based therapies. AREAS TIMELY FOR DEVELOPING RESEARCH Include technology development to improve the cost and purity of manufacture and final product quality.
British Medical Bulletin | 2013
Elizabeth Ratcliffe; Katie E. Glen; May Win Naing; David J. Williams
BACKGROUND Apart from haematopoietic stem cell transplantation for haematological disorders many stem cell-based therapies are experimental. However, with only 12 years between human embryonic stem cell isolation and the first clinical trial, development of stem cell products for regenerative medicine has been rapid and numerous clinical trials have begun to investigate their therapeutic potential. SOURCE OF DATA This review summarizes key clinical trial data, current and future perspectives on stem cell-based products undergoing clinical trials, based on literature search and author research. AREAS OF AGREEMENT It is widely recognized that the ability to stimulate stem cell differentiation into specialized cells for use as cellular therapies will revolutionize health care and offer major hope for numerous diseases for which there are limited or no therapeutic options. AREAS OF CONTROVERSY Stem cell-based products are unique and cover a large range of disorders to be treated; therefore, there is significant potential for variation in cell source, type, processing manipulation, the bioprocessing approach and scalability, the cost and purity of manufacture, final product quality and mode of action. As such there are gaps in regulatory and manufacturing frameworks and technologies, only a small number of products are currently within late phase clinical trials and few products have achieved commercialization. GROWING POINTS Recent developments are encouraging acceleration through the difficulties encountered en route to clinical trials and commercialization of stem cell therapies. AREAS TIMELY FOR DEVELOPING RESEARCH The field is growing year on year with the first clinical trial using induced pluripotent stem cells anticipated by end 2013.
Philosophical Transactions of the Royal Society A | 2012
David J. Williams; Robert J. Thomas; Paul C. Hourd; Amit Chandra; Elizabeth Ratcliffe; Yang Liu; Erin A. Rayment; J. Richard Archer
Innovations in engineering applied to healthcare make a significant difference to peoples lives. Market growth is guaranteed by demographics. Regulation and requirements for good manufacturing practice—extreme levels of repeatability and reliability—demand high-precision process and measurement solutions. Emerging technologies using living biological materials add complexity. This paper presents some results of work demonstrating the precision automated manufacture of living materials, particularly the expansion of populations of human stem cells for therapeutic use as regenerative medicines. The paper also describes quality engineering techniques for precision process design and improvement, and identifies the requirements for manufacturing technology and measurement systems evolution for such therapies.
Journal of Biotechnology | 2012
Elizabeth Ratcliffe; Katie E. Glen; Victoria L. Workman; Adrian J. Stacey; Robert J. Thomas
Proliferation and differentiation of haematopoietic stem cells (HSCs) from umbilical cord blood at large scale will potentially underpin production of a number of therapeutic cellular products in development, including erythrocytes and platelets. However, to achieve production processes that are scalable and optimised for cost and quality, scaled down development platforms that can define process parameter tolerances and consequent manufacturing controls are essential. We have demonstrated the potential of a new, automated, 24×15 mL replicate suspension bioreactor system, with online monitoring and control, to develop an HSC proliferation and differentiation process for erythroid committed cells (CD71(+), CD235a(+)). Cell proliferation was relatively robust to cell density and oxygen levels and reached up to 6 population doublings over 10 days. The maximum suspension culture density for a 48 h total media exchange protocol was established to be in the order of 10(7)cells/mL. This system will be valuable for the further HSC suspension culture cost reduction and optimisation necessary before the application of conventional stirred tank technology to scaled manufacture of HSC derived products.
Cytotherapy | 2013
Katie E. Glen; Victoria L. Workman; Forhad Ahmed; Elizabeth Ratcliffe; Adrian J. Stacey; Robert J. Thomas
BACKGROUND AIMS Economic ex vivo manufacture of erythrocytes at 10(12) cell doses requires an efficiently controlled bio-process capable of extensive proliferation and high terminal density. High-resolution characterization of the process would identify production strategies for increased efficiency, monitoring and control. METHODS CD34(+) cord blood cells or equivalent cells that had been pre-expanded for 7 days with Delta1 Notch ligand were placed in erythroid expansion and differentiation conditions in a micro-scale ambr suspension bioreactor. Multiple culture parameters were varied, and phenotype markers and metabolites measured to identify conserved trends and robust monitoring markers. RESULTS The cells exhibited a bi-modal erythroid differentiation pattern with an erythroid marker peak after 2 weeks and 3 weeks of culture; differentiation was comparatively weighted toward the second peak in Delta1 pre-expanded cells. Both differentiation events were strengthened by omission of stem cell factor and dexamethasone. The cumulative cell proliferation and death, or directly measured CD45 expression, enabled monitoring of proliferative rate of the cells. The metabolic activities of the cultures (glucose, glutamine and ammonia consumption or production) were highly variable but exhibited systematic change synchronized with the change in differentiation state. CONCLUSIONS Erythroid differentiation chronology is partly determined by the heterogeneous CD34(+) progenitor compartment with implications for input control; Delta1 ligand-mediated progenitor culture can alter differentiation profile with control benefits for engineering production strategy. Differentiation correlated changes in cytokine response, markers and metabolic state will enable scientifically designed monitoring and timing of manufacturing process steps.
Journal of Microbial & Biochemical Technology | 2014
Elizabeth Ratcliffe
Orthopaedic implant infections are an increasing problem and management commonly involves implant removal with serious consequences. Biofilm-forming staphylococci are the most common causative organisms, with Staphylococcus aureus being the most virulent and MRSA increasingly involved. Initial bacterial adhesion is a crucial event in biofilm formation and infection establishment. Directing host antibody against bacterial factors involved in adhesion and biofilm formation may significantly inhibit infection establishment on biomaterials. Two recombinant S. aureus-derived binding proteins (FnBP, IsdA) were investigated as potential vaccine antigens and resultant antibody was assessed to determine whether immune inhibition of bacteria-ligand binding can significantly impact on attachment to plasma-conditioned biomaterial surfaces, in the presence of other bacterial ligands. Adhesion of homologous and heterologous (clinical MRSA) S. aureus to plasma-conditioned steel was significantly reduced (~50% average reduction, p<0.0001) when pre-exposed to anti-rFnBP-A antiserum that was 50-fold more dilute than the actual titre from immunisation. Inhibition was related to ligand presence and not staphylococcal Protein A. Reduced adhesion was not observed with an FnBP-mutant strain, indicating specific inhibitory antibody involvement, and demonstrating the potential of rFnBP-A for prevention of S. aureus implantrelated infection. Adhesion-inhibitory activity was also observed with a purified IgG-fraction of rIsdA antiserum but this activity appeared to be masked by non-IsdA–related interactions when non-IgG-purified antiserum was assessed.
Regenerative Medicine | 2014
Paul C. Hourd; Amit Chandra; David Alvey; Patrick J. Ginty; Mark J.S. McCall; Elizabeth Ratcliffe; Erin A. Rayment; David J. Williams
Academic centers, hospitals and small companies, as typical development settings for UK regenerative medicine assets, are significant contributors to the development of autologous cell-based therapies. Often lacking the appropriate funding, quality assurance heritage or specialist regulatory expertise, qualifying aseptic cell processing facilities for GMP compliance is a significant challenge. The qualification of a new Cell Therapy Manufacturing Facility with automated processing capability, the first of its kind in a UK academic setting, provides a unique demonstrator for the qualification of small-scale, automated facilities for GMP-compliant manufacture of autologous cell-based products in these settings. This paper shares our experiences in qualifying the Cell Therapy Manufacturing Facility, focusing on our approach to streamlining the qualification effort, the challenges, project delays and inefficiencies we encountered, and the subsequent lessons learned.
Biotechnology Progress | 2014
Elizabeth Ratcliffe; Robert J. Thomas; Adrian J. Stacey
There is a dearth of technology and methods to aid process characterization, control and scale‐up of complex culture platforms that provide niche micro‐environments for some stem cell‐based products. We have demonstrated a novel use of 3d in vivo imaging systems to visualize medium flow and cell distribution within a complex culture platform (hollow fiber bioreactor) to aid characterization of potential spatial heterogeneity and identify potential routes of bioreactor failure or sources of variability. This can then aid process characterization and control of such systems with a view to scale‐up. Two potential sources of variation were observed with multiple bioreactors repeatedly imaged using two different imaging systems: shortcutting of medium between adjacent inlet and outlet ports with the potential to create medium gradients within the bioreactor, and localization of bioluminescent murine 4T1‐luc2 cells upon inoculation with the potential to create variable seeding densities at different points within the cell growth chamber. The ability of the imaging technique to identify these key operational bioreactor characteristics demonstrates an emerging technique in troubleshooting and engineering optimization of bioreactor performance.
Methods of Molecular Biology | 2012
Robert J. Thomas; Elizabeth Ratcliffe
Human cell culture processes developed at research laboratory scale need to be translated to large-scale production processes to achieve commercial application to a large market. To allow this transition of scale with consistent process performance and control of costs, it will be necessary to reduce manual processing and increase automation. There are a number of commercially available platforms that will reduce manual process intervention and improve process control for different culture formats. However, in many human cell-based applications, there is currently a need to remain close to the development format, usually adherent culture on cell culture plastic or matrix-coated wells or flasks due to deterioration of cell quality in other environments, such as suspension. This chapter presents an example method for adherent automated human stem cell culture using a specific automated flask handling platform, the CompacT SelecT.
Langmuir | 2018
Gianluca Balzamo; Helen Willcock; Junaid Ali; Elizabeth Ratcliffe; Elisa Mele
Here, the morphology of polypore fungi has inspired the fabrication of poly(vinylidene fluoride) (PVDF) membranes with dual porosity by nonsolvent-induced phase separation (NIPS). The fruiting body of such microorganisms is constituted of two distinct regions, finger- and sponge-like structures, which have been successfully mimicked by controlling the coagulation bath temperature during the NIPS process. The use of water at 10 °C as coagulant resulted in membranes with the highest finger-like/sponge-like ratio (53% of the total membrane thickness), while water at 90 °C allowed the formation of macrovoid-free membranes. The microchannels and the asymmetric porosity were used to enhance the oil sorption capacity of the PVDF membranes and to achieve directional release of therapeutic essential oils. These PVDF membranes with easily tuned asymmetric channel-like porosity and controlled pore size are ideal candidates for drug delivery applications.