Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Rossin is active.

Publication


Featured researches published by Elizabeth Rossin.


Nature | 2012

Patterns and rates of exonic de novo mutations in autism spectrum disorders

Benjamin M. Neale; Yan Kou; Li Liu; Avi Ma'ayan; Kaitlin E. Samocha; Aniko Sabo; Chiao-Feng Lin; Christine Stevens; Li-San Wang; Vladimir Makarov; Pazi Penchas Polak; Seungtai Yoon; Jared Maguire; Emily L. Crawford; Nicholas G. Campbell; Evan T. Geller; Otto Valladares; Chad Shafer; Han Liu; Tuo Zhao; Guiqing Cai; Jayon Lihm; Ruth Dannenfelser; Omar Jabado; Zuleyma Peralta; Uma Nagaswamy; Donna M. Muzny; Jeffrey G. Reid; Irene Newsham; Yuanqing Wu

Autism spectrum disorders (ASD) are believed to have genetic and environmental origins, yet in only a modest fraction of individuals can specific causes be identified. To identify further genetic risk factors, here we assess the role of de novo mutations in ASD by sequencing the exomes of ASD cases and their parents (n = 175 trios). Fewer than half of the cases (46.3%) carry a missense or nonsense de novo variant, and the overall rate of mutation is only modestly higher than the expected rate. In contrast, the proteins encoded by genes that harboured de novo missense or nonsense mutations showed a higher degree of connectivity among themselves and to previous ASD genes as indexed by protein-protein interaction screens. The small increase in the rate of de novo events, when taken together with the protein interaction results, are consistent with an important but limited role for de novo point mutations in ASD, similar to that documented for de novo copy number variants. Genetic models incorporating these data indicate that most of the observed de novo events are unconnected to ASD; those that do confer risk are distributed across many genes and are incompletely penetrant (that is, not necessarily sufficient for disease). Our results support polygenic models in which spontaneous coding mutations in any of a large number of genes increases risk by 5- to 20-fold. Despite the challenge posed by such models, results from de novo events and a large parallel case–control study provide strong evidence in favour of CHD8 and KATNAL2 as genuine autism risk factors.


PLOS Genetics | 2011

Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

Elizabeth Rossin; Kasper Lage; Soumya Raychaudhuri; Ramnik J. Xavier; Diana Tatar; Yair Benita; Chris Cotsapas; Mark J. Daly

Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohns disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease.


PLOS Genetics | 2011

Pervasive sharing of genetic effects in autoimmune disease.

Chris Cotsapas; Benjamin F. Voight; Elizabeth Rossin; Kasper Lage; Benjamin M. Neale; Chris Wallace; Gonçalo R. Abecasis; Jeffrey C. Barrett; Timothy W. Behrens; Judy H. Cho; Philip L. De Jager; James T. Elder; Robert R. Graham; Peter K. Gregersen; Lars Klareskog; Katherine A. Siminovitch; David A. van Heel; Cisca Wijmenga; Jane Worthington; John A. Todd; David A. Hafler; Stephen S. Rich; Mark J. Daly

Genome-wide association (GWA) studies have identified numerous, replicable, genetic associations between common single nucleotide polymorphisms (SNPs) and risk of common autoimmune and inflammatory (immune-mediated) diseases, some of which are shared between two diseases. Along with epidemiological and clinical evidence, this suggests that some genetic risk factors may be shared across diseases—as is the case with alleles in the Major Histocompatibility Locus. In this work we evaluate the extent of this sharing for 107 immune disease-risk SNPs in seven diseases: celiac disease, Crohns disease, multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes. We have developed a novel statistic for Cross Phenotype Meta-Analysis (CPMA) which detects association of a SNP to multiple, but not necessarily all, phenotypes. With it, we find evidence that 47/107 (44%) immune-mediated disease risk SNPs are associated to multiple—but not all—immune-mediated diseases (SNP-wise P CPMA<0.01). We also show that distinct groups of interacting proteins are encoded near SNPs which predispose to the same subsets of diseases; we propose these as the mechanistic basis of shared disease risk. We are thus able to leverage genetic data across diseases to construct biological hypotheses about the underlying mechanism of pathogenesis.


Nature Genetics | 2013

Genome-wide meta-analysis identifies new susceptibility loci for migraine

Verneri Anttila; Bendik S. Winsvold; Padhraig Gormley; Tobias Kurth; Francesco Bettella; George McMahon; Mikko Kallela; Rainer Malik; Boukje de Vries; Gisela M. Terwindt; Sarah E. Medland; Unda Todt; Wendy L. McArdle; Lydia Quaye; Markku Koiranen; M. Arfan Ikram; Terho Lehtimäki; Anine H. Stam; Lannie Ligthart; Juho Wedenoja; Ian Dunham; Benjamin M. Neale; Priit Palta; Eija Hämäläinen; Markus Schuerks; Lynda M. Rose; Julie E. Buring; Paul M. Ridker; Stacy Steinberg; Hreinn Stefansson

Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P < 5 × 10−8). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The role of the CD58 locus in multiple sclerosis

Philip L. De Jager; Clare Baecher-Allan; Lisa M. Maier; Ariel T. Arthur; Linda Ottoboni; Lisa F. Barcellos; Jacob L. McCauley; Stephen Sawcer; An Goris; Janna Saarela; Roman Yelensky; Alkes L. Price; Virpi Leppa; Nick Patterson; Paul I. W. de Bakker; Dong Tran; Cristin Aubin; Susan Pobywajlo; Elizabeth Rossin; Xinli Hu; Charles Ashley; Edwin Choy; John D. Rioux; Margaret A. Pericak-Vance; Adrian J. Ivinson; David R. Booth; Graeme J. Stewart; Aarno Palotie; Leena Peltonen; Bénédicte Dubois

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system associated with demyelination and axonal loss. A whole genome association scan suggested that allelic variants in the CD58 gene region, encoding the costimulatory molecule LFA-3, are associated with risk of developing MS. We now report additional genetic evidence, as well as resequencing and fine mapping of the CD58 locus in patients with MS and control subjects. These efforts identify a CD58 variant that provides further evidence of association with MS (P = 1.1 × 10−6, OR 0.82) and the single protective effect within the CD58 locus is captured by the rs2300747G allele. This protective rs2300747G allele is associated with a dose-dependent increase in CD58 mRNA expression in lymphoblastic cell lines (P = 1.1 × 10−10) and in peripheral blood mononuclear cells from MS subjects (P = 0.0037). This protective effect of enhanced CD58 expression on circulating mononuclear cells in patients with MS is supported by finding that CD58 mRNA expression is higher in MS subjects during clinical remission. Functional investigations suggest a potential mechanism whereby increases in CD58 expression, mediated by the protective allele, up-regulate the expression of transcription factor FoxP3 through engagement of the CD58 receptor, CD2, leading to the enhanced function of CD4+CD25high regulatory T cells that are defective in subjects with MS.


American Journal of Human Genetics | 2007

Admixture mapping of an allele affecting interleukin 6 soluble receptor and interleukin 6 levels.

David Reich; Nick Patterson; Vijaya Ramesh; Philip L. De Jager; Gavin J. McDonald; Arti Tandon; Edwin Choy; Donglei Hu; Bani Tamraz; Ludmila Pawlikowska; Christina Wassel-Fyr; Scott Huntsman; Alicja Waliszewska; Elizabeth Rossin; Rongling Li; Melissa Garcia; Alex P. Reiner; Robert E. Ferrell; Steve Cummings; Pui-Yan Kwok; Tamara B. Harris; Joseph M. Zmuda; Elad Ziv

Circulating levels of inflammatory markers can predict cardiovascular disease risk. To identify genes influencing the levels of these markers, we genotyped 1,343 single-nucleotide polymorphisms (SNPs) in 1,184 African Americans from the Health, Aging and Body Composition (Health ABC) Study. Using admixture mapping, we found a significant association of interleukin 6 soluble receptor (IL-6 SR) with European ancestry on chromosome 1 (LOD 4.59), in a region that includes the gene for this receptor (IL-6R). Genotyping 19 SNPs showed that the effect is largely explained by an allele at 4% frequency in West Africans and at 35% frequency in European Americans, first described as associated with IL-6 SR in a Japanese cohort. We replicate this association (P<<1.0x10-12) and also demonstrate a new association with circulating levels of a different molecule, IL-6 (P<3.4x10-5). After replication in 1,674 European Americans from Health ABC, the combined result is even more significant: P<<1.0x10-12 for IL-6 SR, and P<2.0x10-9 for IL-6. These results also serve as an important proof of principle, showing that admixture mapping can not only coarsely localize but can also fine map a phenotypically important variant.


Nature Genetics | 2013

Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing

Andrew Kirby; Andreas Gnirke; David B. Jaffe; Veronika Barešová; Nathalie Pochet; Brendan Blumenstiel; Chun Ye; Daniel Aird; Christine Stevens; James Robinson; Moran N. Cabili; Irit Gat-Viks; Edward Kelliher; Riza Daza; Matthew DeFelice; Helena Hůlková; Jana Sovová; Petr Vylet’al; Corinne Antignac; Mitchell Guttman; Robert E. Handsaker; Danielle Perrin; Scott Steelman; Snaevar Sigurdsson; Steven J. Scheinman; Carrie Sougnez; Kristian Cibulskis; Melissa Parkin; Todd Green; Elizabeth Rossin

Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (∼1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.


PLOS Genetics | 2013

Human Genetics in Rheumatoid Arthritis Guides a High- Throughput Drug Screen of the CD40 Signaling Pathway

Gang Li; Dorothée Diogo; Di Wu; Jim Spoonamore; Vlado Dančík; Lude Franke; Fina Kurreeman; Elizabeth Rossin; Grant Duclos; Cathy L Hartland; Xuezhong Zhou; Kejie Li; Jun Liu; Philip L. De Jager; Katherine A. Siminovitch; Alexandra Zhernakova; Soumya Raychaudhuri; John Bowes; Steve Eyre; Leonid Padyukov; Peter K. Gregersen; Jane Worthington; Namrata Gupta; Paul A. Clemons; Eli A. Stahl; Nicola Tolliday; Robert M. Plenge

Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10−9). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10−9), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA.


Nature Methods | 2014

Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

Alicia Lundby; Elizabeth Rossin; Annette Buur Steffensen; Moshe Rav Acha; Christopher Newton-Cheh; Arne Pfeufer; Stacey N. Lynch; Søren-Peter Olesen; Søren Brunak; Patrick T. Ellinor; J. Wouter Jukema; Stella Trompet; Ian Ford; Peter W. Macfarlane; Bouwe P. Krijthe; Albert Hofman; André G. Uitterlinden; Bruno H. Stricker; Hendrik M. Nathoe; Wilko Spiering; Mark J. Daly; Folkert W. Asselbergs; Pim van der Harst; David J. Milan; Paul I. W. de Bakker; Kasper Lage; J. Olsen

Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics.


Bioinformatics | 2011

A framework for analytical characterization of monoclonal antibodies based on reactivity profiles in different tissues

Elizabeth Rossin; Tsung-I Lin; Hsiu J. Ho; Steven J. Mentzer; Saumyadipta Pyne

MOTIVATION Monoclonal antibodies (mAbs) are among the most powerful and important tools in biology and medicine. MAb development is of great significance to many research and clinical applications. Therefore, objective mAb classification is essential for categorizing and comparing mAb panels based on their reactivity patterns in different cellular species. However, typical flow cytometric mAb profiles present unique modeling challenges with their non-Gaussian features and intersample variations. It makes accurate mAb classification difficult to do with the currently used kernel-based or hierarchical clustering techniques. RESULTS To address these challenges, in the present study we developed a formal two-step framework called mAbprofiler for systematic, parametric characterization of mAb profiles. Further, we measured the reactivity of hundreds of new antibodies in diverse tissues using flow cytometry, which we successfully classified using mAbprofiler. First, mAbprofiler fits a mAbs flow cytometric histogram with a finite mixture model of skew t distributions that is robust against non-Gaussian features, and constructs a precise, smooth and mathematically rigorous profile. Then it performs novel curve clustering of the fitted mAb profiles using a skew t mixture of non-linear regression model that can handle intersample variation. Thus, mAbprofiler provides a new framework for identifying robust mAb classes, all well defined by distinct parametric templates, which can be used for classifying new mAb samples. We validated our classification results both computationally and empirically using mAb profiles of known classification. AVAILABILITY AND IMPLEMENTATION A demonstration code in R is available at the journal website. The R code implementing the full framework is available from the author website - http://amath.nchu.edu.tw/www/teacher/tilin/software CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Elizabeth Rossin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soumya Raychaudhuri

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge