Elizabeth S. Haswell
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth S. Haswell.
Current Biology | 2006
Elizabeth S. Haswell; Elliot M. Meyerowitz
BACKGROUND Mechanosensitive (MS) ion channels provide a mechanism for the perception of mechanical stimuli such as sound, touch, and osmotic pressure. The bacterial MS ion channel MscS opens in response to increased membrane tension and serves to protect against cellular lysis during osmotic downshock. MscS-like proteins are found widely in bacterial and archaeal species and have also been identified in fission yeast and plants. None of the eukaryotic members of the family have yet been characterized. RESULTS Here, we characterize two MscS-like (MSL) proteins from Arabidopsis thaliana, MSL2 and MSL3. MSL3 can rescue the osmotic-shock sensitivity of a bacterial mutant lacking MS-ion-channel activity, suggesting that it functions as a mechanosensitive ion channel. Arabidopsis plants harboring insertional mutations in both MSL3 and MSL2 show abnormalities in the size and shape of plastids, which are plant-specific endosymbiotic organelles responsible for photosynthesis, gravity perception, and numerous metabolic reactions. MSL2-GFP and MSL3-GFP are localized to discrete foci on the plastid envelope and colocalize with the plastid division protein AtMinE. CONCLUSIONS Our data support a model wherein MSL2 and MSL3 control plastid size, shape, and perhaps division during normal plant development by altering ion flux in response to changes in membrane tension. We propose that MscS family members have evolved new roles in plants since the endosymbiotic event that gave rise to plastids.
Current Biology | 2008
Elizabeth S. Haswell; Rémi Peyronnet; Hélène Barbier-Brygoo; Elliot M. Meyerowitz; Jean-Marie Frachisse
In bacterial and animal systems, mechanosensitive (MS) ion channels are thought to mediate the perception of pressure, touch, and sound [1-3]. Although plants respond to a wide variety of mechanical stimuli, and although many mechanosensitive channel activities have been characterized in plant membranes by the patch-clamp method, the molecular nature of mechanoperception in plant systems has remained elusive [4]. Likely candidates are relatives of MscS (Mechanosensitive channel of small conductance), a well-characterized MS channel that serves to protect E. coli from osmotic shock [5]. Ten MscS-Like (MSL) proteins are found in the genome of the model flowering plant Arabidopsis thaliana[4, 6, 7]. MSL2 and MSL3, along with MSC1, a MscS family member from green algae, are implicated in the control of organelle morphology [8, 9]. Here, we characterize MSL9 and MSL10, two MSL proteins found in the plasma membrane of root cells. We use a combined genetic and electrophysiological approach to show that MSL9 and MSL10, along with three other members of the MSL family, are required for MS channel activities detected in protoplasts derived from root cells. This is the first molecular identification and characterization of MS channels in plant membranes.
Structure | 2011
Elizabeth S. Haswell; Rob Phillips; Douglas C. Rees
While mechanobiological processes employ diverse mechanisms, at their heart are force-induced perturbations in the structure and dynamics of molecules capable of triggering subsequent events. Among the best characterized force-sensing systems are bacterial mechanosensitive channels. These channels reflect an intimate coupling of protein conformation with the mechanics of the surrounding membrane; the membrane serves as an adaptable sensor that responds to an input of applied force and converts it into an output signal, interpreted for the cell by mechanosensitive channels. The cell can exploit this information in a number of ways: ensuring cellular viability in the presence of osmotic stress and perhaps also serving as a signal transducer for membrane tension or other functions. This review focuses on the bacterial mechanosensitive channels of large (MscL) and small (MscS) conductance and their eukaryotic homologs, with an emphasis on the outstanding issues surrounding the function and mechanism of this fascinating class of molecules.
Journal of Experimental Botany | 2013
Gabriele B. Monshausen; Elizabeth S. Haswell
The ability to sense and respond to a wide variety of mechanical stimuli-gravity, touch, osmotic pressure, or the resistance of the cell wall-is a critical feature of every plant cell, whether or not it is specialized for mechanotransduction. Mechanoperceptive events are an essential part of plant life, required for normal growth and development at the cell, tissue, and whole-plant level and for the proper response to an array of biotic and abiotic stresses. One current challenge for plant mechanobiologists is to link these physiological responses to specific mechanoreceptors and signal transduction pathways. Here, we describe recent progress in the identification and characterization of two classes of putative mechanoreceptors, ion channels and receptor-like kinases. We also discuss how the secondary messenger Ca(2+) operates at the centre of many of these mechanical signal transduction pathways.
Current Biology | 2012
Kira M. Veley; Sarah Marshburn; Cara E. Clure; Elizabeth S. Haswell
Cellular response to osmotic stress is critical for survival and involves volume control through the regulated transport of osmolytes. Organelles may respond similarly to abrupt changes in cytoplasmic osmolarity. The plastids of the Arabidopsis thaliana leaf epidermis provide a model system for the study of organellar response to osmotic stress within the context of the cell. An Arabidopsis mutant lacking two plastid-localized homologs of the bacteria mechanosensitive channel MscS (MscS-like [MSL] 2 and 3) exhibits large round epidermal plastids that lack dynamic extensions known as stromules. This phenotype is present under normal growth conditions and does not require exposure to extracellular osmotic stress. Here we show that increasing cytoplasmic osmolarity through a genetic lesion known to produce elevated levels of soluble sugars, exogenously providing osmolytes in the growth media, or withholding water rescues the msl2-1 msl3-1 leaf epidermal plastid phenotype, producing plastids that resemble the wild-type in shape and size. Furthermore, the epidermal plastids in msl2-1 msl3-1 leaves undergo rapid and reversible volume and shape changes in response to extracellular hypertonic or hypotonic challenges. We conclude that plastids are under hypoosmotic stress during normal plant growth and dynamic response to this stress requires MSL2 and MSL3.
The Plant Cell | 2011
Margaret E. Wilson; Gregory S. Jensen; Elizabeth S. Haswell
This work finds that mechanosensitive channels play an important role in the division of Arabidopsis chloroplasts and contribute to division site placement in E. coli cells, linking membrane tension to the assembly of FtsZ rings in chloroplasts and bacteria. Chloroplasts must divide repeatedly to maintain their population during plant growth and development. A number of proteins required for chloroplast division have been identified, and the functional relationships between them are beginning to be elucidated. In both chloroplasts and bacteria, the future site of division is specified by placement of the Filamentous temperature sensitive Z (FtsZ) ring, and the Min system serves to restrict FtsZ ring formation to mid-chloroplast or mid-cell. How the Min system is regulated in response to environmental and developmental factors is largely unstudied. Here, we investigated the role in chloroplast division played by two Arabidopsis thaliana homologs of the bacterial mechanosensitive (MS) channel MscS: MscS-Like 2 (MSL2) and MSL3. Immunofluorescence microscopy and live imaging approaches demonstrated that msl2 msl3 double mutants have enlarged chloroplasts containing multiple FtsZ rings. Genetic analyses indicate that MSL2, MSL3, and components of the Min system function in the same pathway to regulate chloroplast size and FtsZ ring formation. In addition, an Escherichia coli strain lacking MS channels also showed aberrant FtsZ ring assembly. These results establish MS channels as components of the chloroplast division machinery and suggest that their role is evolutionarily conserved.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Grigory Maksaev; Elizabeth S. Haswell
Like many other organisms, plants are capable of sensing and responding to mechanical stimuli such as touch, osmotic pressure, and gravity. One mechanism for the perception of force is the activation of mechanosensitive (or stretch-activated) ion channels, and a number of mechanosensitive channel activities have been described in plant membranes. Based on their homology to the bacterial mechanosensitive channel MscS, the 10 MscS-Like (MSL) proteins of Arabidopsis thaliana have been hypothesized to form mechanosensitive channels in plant cell and organelle membranes. However, definitive proof that MSLs form mechanosensitive channels has been lacking. Here we used single-channel patch clamp electrophysiology to show that MSL10 is capable of providing a MS channel activity when heterologously expressed in Xenopus laevis oocytes. This channel had a conductance of ∼100 pS, consistent with the hypothesis that it underlies an activity previously observed in the plasma membrane of plant root cells. We found that MSL10 formed a channel with a moderate preference for anions, which was modulated by strongly positive and negative membrane potentials, and was reversibly inhibited by gadolinium, a known inhibitor of mechanosensitive channels. MSL10 demonstrated asymmetric activation/inactivation kinetics, with the channel closing at substantially lower tensions than channel opening. The electrophysiological characterization of MSL10 reported here provides insight into the evolution of structure and function of this important family of proteins.
Annual Review of Plant Biology | 2015
Eric S. Hamilton; Angela M. Schlegel; Elizabeth S. Haswell
Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems.
Current Topics in Membranes | 2007
Elizabeth S. Haswell
Publisher Summary Mechanotransduction is the process by which physical information about the extra‐ and intracellular environment is converted to a biochemical signal. The process of plants responding to mechanical stimuli has been under investigation since the work of Darwin, but a little is known about the molecules involved. Response to mechanical stimuli such as gravity, temperature, turgor pressure, and touch are important for plant growth and development. Tension‐responsive ion channel activities have been discovered in the plasma and vacuolar membranes of many plant species and plant cell types. Molecular genetic, electrophysiological, and phylogenetic analyses are beginning to reveal the process of mechanosensitive channel of small conductance (MscS)‐like proteins function in discrete cellular compartments, where they are implicated in the perception of membrane tension in Arabidopsis and Chlamydomonas . A comprehensive analysis of the eukaryotic members of the multiple MscS‐like gene family should provide insight into several aspects of basic plant biology.
Science | 2015
Eric S. Hamilton; Gregory S. Jensen; Grigory Maksaev; Andrew Katims; Ashley M. Sherp; Elizabeth S. Haswell
Metered rehydration in pollen grains When a desiccated pollen grain lands on fertile territory, it rehydrates on the way to activating its growth and metabolic processes. Studying the small plant Arabidopsis, Hamilton et al. have identified a mechanosensory ion channel that responds to the distention of the plasma membrane as the pollen grain rehydrates. With this channel damaged or absent, the pollen grains germinated overenthusiastically but then showed a tendency to burst. Science, this issue p. 438 Hydration of pollen activates a mechanosensory channel as the plasma membrane stretches. Pollen grains undergo dramatic changes in cellular water potential as they deliver the male germ line to female gametes, and it has been proposed that mechanosensitive ion channels may sense the resulting mechanical stress. Here, we identify and characterize MscS-like 8 (MSL8), a pollen-specific, membrane tension–gated ion channel required for pollen to survive the hypoosmotic shock of rehydration and for full male fertility. MSL8 negatively regulates pollen germination but is required for cellular integrity during germination and tube growth. MSL8 thus senses and responds to changes in membrane tension associated with pollen hydration and germination. These data further suggest that homologs of bacterial MscS have been repurposed in eukaryotes to function as mechanosensors in multiple developmental and environmental contexts.