Elizabeth S. Lewkowicz
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth S. Lewkowicz.
Biotechnology Advances | 2015
Luis E. Iglesias; Elizabeth S. Lewkowicz; Rosario Médici; Paola Bianchi; Adolfo M. Iribarren
Nucleosides are valuable bioactive molecules, which display antiviral and antitumour activities. Diverse types of prodrugs are designed to enhance their therapeutic efficacy, however this strategy faces the troublesome selectivity issues of nucleoside chemistry. In this context, the aim of this review is to give an overview of the opportunities provided by biocatalytic procedures in the preparation of nucleoside prodrugs. The potential of biocatalysis in this research area will be presented through examples covering the different types of nucleoside prodrugs: nucleoside analogues as prodrugs, nucleoside lipophilic prodrugs and nucleoside hydrophilic prodrugs.
Tetrahedron Letters | 2003
J.A Trelles; María Fernández; Elizabeth S. Lewkowicz; Adolfo M. Iribarren; J.V. Sinisterra
Abstract Biocatalysed purine nucleoside synthesis was carried out using immobilised Enterobacter gergoviae CECT 875. Similar yields (80–95%) in adenosine were obtained with both free and immobilised cells though in the last case a long reaction time was necessary. The immobilised cells can be reused at least for more than 30 times without significant loss of enzymatic activity. The immobilised biocatalyst in agarose is active in the synthesis of unnatural nucleosides.
Biotechnology Letters | 2005
Jorge A. Trelles; A.L. Valino; V. Runza; Elizabeth S. Lewkowicz; Adolfo M. Iribarren
Modified nucleosides can be prepared by microbial transglycosylation from cheaper nucleoside precursors using free or immobilised whole cells. An efficient screening method to find transglycosylation activity in␣microorganisms was developed for the synthesis of 6-modified purine nucleosides, such as 6-chloro-, 6-methoxy-, 6-iodo- and 6-mercaptopurine ribonucleoside. Out of 100 microorganisms screened, Bacillus stearothermophilus ATCC 12980 was the best for this purpose.
Biotechnology Letters | 2006
Julieta Panero; Jorge A. Trelles; Valeria Rodano; Javier M. Montserrat; Luis E. Iglesias; Elizabeth S. Lewkowicz; Adolfo M. Iribarren
Enzymatic hydrolysis of acetylated nucleosides using microbial whole cells has been carried out for the first time. Unlike Candida antarctica B lipase-catalysed alcoholysis, none of the tested microorganisms displayed a common deacetylation profile. Depending on the substrate and the biocatalyst used, 5′-selective deprotection or mixtures of mono O-acetylated products were obtained.
Biocatalysis and Biotransformation | 2010
Matías Nóbile; Marco Terreni; Elizabeth S. Lewkowicz; Adolfo M. Iribarren
Abstract Microbial transglycosylation is useful as a green alternative in the preparation of purine nucleosides and analogues, especially for those that display pharmacological activities. In a search for new transglycosylation biocatalysts, two Aeromonas hydrophila strains were selected. The substrate specificity of both micro-organisms was studied and, as a result, several nucleoside analogues have been prepared. Among them, ribavirin, a broad spectrum antiviral, and the well-known anti HIV didanosine, were prepared, in 77 and 62% yield using A. hydrophila CECT 4226 and A. hydrophila CECT 4221, respectively. In order to scale-up the processes, the reaction conditions, product purification and biocatalyst preparation were analyzed and optimized.
Applied Biochemistry and Biotechnology | 2012
Ana Laura Valino; Martín A. Palazzolo; Adolfo M. Iribarren; Elizabeth S. Lewkowicz
Abstract2-Deoxyribose 5-phosphate (DR5P) is a key intermediate in the biocatalyzed preparation of deoxyribonucleosides. Therefore, DR5P production by means of simpler, cleaner, and economic pathways becomes highly interesting. One strategy involves the use of bacterial whole cells containing DR5P aldolase as biocatalyst for the aldol addition between acetaldehyde and d-glyceraldehyde 3-phosphate or glycolytic intermediates that in situ generate the acceptor substrate. In this work, diverse microorganisms capable of synthesizing DR5P were selected by screening several bacteria genera. In particular, Erwinia carotovora ATCC 33260 was identified as a new biocatalyst that afforded 14.1-mM DR5P starting from a cheap raw material like glucose.
Biotechnology Letters | 2011
Rosario Médici; Juan Ignacio Garaycoechea; Lucas Andrés Dettorre; Adolfo M. Iribarren; Elizabeth S. Lewkowicz
The synthesis of halogenated nucleosides and nucleobases is of interest due to their chemical and pharmacological applications. Herein, the enzymatic halogenation of nucleobases and analogues catalysed by microorganisms and by chloroperoxidase from Caldariomyces fumago has been studied. This latter enzyme catalysed the chlorination and bromination of indoline and uracil. Pseudomonas, Citrobacter, Aeromonas, Streptomyces, Xanthomonas, and Bacillus genera catalysed the chlorination and/or bromination of indole and indoline. Different products were obtained depending on the substrate, the biocatalyst and the halide used. In particular, 85% conversion from indole to 5-bromoindole was achieved using Streptomyces cetonii.
Bioorganic & Medicinal Chemistry Letters | 2009
Rosario Médici; Adolfo M. Iribarren; Elizabeth S. Lewkowicz
Unlike the preparation of other purine nucleosides, transglycosylation from a pyrimidine nucleoside and guanine is difficult because of the low solubility of this base. Thus, another strategy, based on the coupled action of two whole cell biocatalyzed reactions, transglycosylation and deamination, was used. Enterobacter gergoviae and Arthrobacter oxydans were employed to synthesize 9-beta-d-arabinofuranosylguanine (AraG), an efficient anti leukemic drug.
Nucleic acids symposium series (2004) | 2008
Rosario Medici; Marisa Taverna Porro; Elizabeth S. Lewkowicz; Javier M. Montserrat; Adolfo M. Iribarren
Biocatalytic procedures offer a good alternative to the chemical synthesis of nucleosides since biocatalyzed reactions are regio- and stereoselective and afford reduced by-products contents. Among them, enzymatic transglycosylation between a pyrimidine nucleoside and a purine base catalyzed by nucleoside phosphorylases or microorganisms that contain them, has attracted considerable attention. In addition, the combination to other enzymatic steps has been explored. In this work we investigate the coupled action of nucleoside phosphorylases with other enzymatic activities: deaminase and phosphopentomutase. Unlike the preparation of other purine nucleosides, transglycosylation from a pyrimidine nucleoside and guanine is difficult because of the low solubility of this base. Therefore, another strategy, based on microbial transglycosylation followed by deamination, is here explored. The direct use of furanose 1-phosphate, the intermediate in the transglycosylation reaction, is an attractive alternative when pyrimidine nucleosides are not available. Its preparation from the more stable furanose 5-phosphate and phosphopentomutase is here applied to different sugars and bases.
International Journal of Biotechnology | 2004
Jorge A. Trelles; Elizabeth S. Lewkowicz; José V. Sinisterra; Adolfo M. Iribarren
The synthesis of modified nucleosides has received a great deal of attention due to their applications as antiviral and antitumoral agents. Among the different synthetic strategies, microbial transglycosylation has already shown to provide successful results. In the present work, we analyse the use of Citrobacter amalonaticus CECT 863 cells - free or immobilised - in the synthesis of some modified nucleosides. The main characteristics of the immobilised biocatalysts such as type and concentration of polymer, mechanical and storage stability and reuse were assessed. From these studies, polyacrylamide was selected as the best support based on its performance and potential industrial applications. In particular, it can be reused more than 50 times without significant loss of activity.