Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Scalbert is active.

Publication


Featured researches published by Elizabeth Scalbert.


Nature Medicine | 2010

The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure

Christophe Guilluy; Jérémy Brégeon; G. Toumaniantz; Malvyne Rolli-Derkinderen; Kevin Retailleau; Laurent Loufrani; Daniel Henrion; Elizabeth Scalbert; Antoine Bril; Raul M. Torres; Stephan Offermanns; Pierre Pacaud; Gervaise Loirand

Hypertension is one of the most frequent pathologies in the industrialized world. Although recognized to be dependent on a combination of genetic and environmental factors, its molecular basis remains elusive. Increased activity of the monomeric G protein RhoA in arteries is a common feature of hypertension. However, how RhoA is activated and whether it has a causative role in hypertension remains unclear. Here we provide evidence that Arhgef1 is the RhoA guanine exchange factor specifically responsible for angiotensin II–induced activation of RhoA signaling in arterial smooth muscle cells. We found that angiotensin II activates Arhgef1 through a previously undescribed mechanism in which Jak2 phosphorylates Tyr738 of Arhgef1. Arhgef1 inactivation in smooth muscle induced resistance to angiotensin II–dependent hypertension in mice, but did not affect normal blood pressure regulation. Our results show that control of RhoA signaling through Arhgef1 is central to the development of angiotensin II–dependent hypertension and identify Arhgef1 as a potential target for the treatment of hypertension.


Peptides | 2004

Structure–activity relationships and structural conformation of a novel urotensin II-related peptide

David Chatenet; Christophe Dubessy; Jérôme Leprince; Cédric Boularan; Ludovic Carlier; Isabelle Ségalas-Milazzo; Laure Guilhaudis; Hassan Oulyadi; Daniel Davoust; Elizabeth Scalbert; Bruno Pfeiffer; Pierre Renard; Marie-Christine Tonon; Isabelle Lihrmann; Pierre Pacaud; Hubert Vaudry

Urotensin II (UII) has been described as the most potent vasoconstrictor peptide and recognized as the endogenous ligand of the orphan G protein-coupled receptor GPR14. Recently, a UII-related peptide (URP) has been isolated from the rat brain and its sequence has been established as H-Ala-Cys-Phe-Trp-Lys-Tyr-Cys-Val-OH. In order to study the structure-function relationships of URP, we have synthesized a series of URP analogs and measured their binding affinity on hGPR14-transfected cells and their contractile activity in a rat aortic ring bioassay. Alanine substitution of each residue of URP significantly reduced the binding affinity and the contractile activity of the peptides, except for the Ala8-substituted analog that retained biological activity. Most importantly, D-scan of URP revealed that [D-Trp4]URP abrogated and [D-Tyr6]URP partially suppressed the UII-evoked contractile response. [Orn5]URP, which had very low agonistic efficacy, was the most potent antagonist in this series. The solution structure of URP has been determined by 1H NMR spectroscopy and molecular dynamics. URP exhibited a single conformation characterized by an inverse gamma-turn comprising residues Trp-Lys-Tyr which plays a crucial role in the biological activity of URP. These pharmacological and structural data should prove useful for the rational design of non-peptide ligands as potential GPR14 agonists and antagonists.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2003

Structure–Activity Relationships of Human Urotensin II and Related Analogues on Rat Aortic Ring Contraction

Patricia Labarrère; David Chatenet; Jérôme Leprince; Céline Marionneau; Gervaise Loirand; Marie-Christine Tonon; Christophe Dubessy; Elizabeth Scalbert; Bruno Pfeiffer; Pierre Renard; Bernard Calas; Pierre Pacaud; Hubert Vaudry

The sequence of human urotensin II (UII) has been recently established as H-Glu-Thr-Pro-Asp-Cys-Phe-Trp-Lys-Tyr-Cys-Val-OH, and it has been reported that UII is the most potent mammalian vasoconstrictor peptide identified so far. A series of UII analogues was synthesized, and the contractile activity of each compound was studied in vitro using de-endothelialised rat aortic rings. Replacement of each amino acid by an l-alanine or by a d-isomer showed that the N- and C-terminal residues flanking the cyclic region of the amidated peptide were relatively tolerant to substitution. Conversely, replacement of any residue of the cyclic region significantly reduced the contractile activity of the molecule. The octapeptide UII(4–11) was 4 times more potent than UII, indicating that the C-terminal region of the molecule possesses full biological activity. Alanine or d-isomer substitutions in UII(4–11) or in UII(4–11)-NH2, respectively, showed a good correlation with the results obtained for UII-NH2. Disulfide bridge disruption or replacement of the cysteine residues by their d-enantiomers markedly reduced the vasoconstrictor effect of UII and its analogues. In contrast, acetylation of the N-terminal residue of UII and UII-NH2 enhanced the potency of the peptide. Finally, monoiodination of the Tyr6 residue in UII(4–11) increased by 5 fold the potency of the peptide in the aortic ring bioassay. This structure–activity relationship study should provide useful information for the rational design of selective and potent UII receptor agonists and antagonists.


The Journal of Comparative Neurology | 2006

Localization of the urotensin II receptor in the rat central nervous system.

Sylvie Jégou; Dorthe Cartier; Christophe Dubessy; Bruno J. Gonzalez; David Chatenet; Hervé Tostivint; Elizabeth Scalbert; Jérôme Leprince; Hubert Vaudry; Isabelle Lihrmann

The vasoactive peptide urotensin II (UII) is primarily expressed in motoneurons of the brainstem and spinal cord. Intracerebroventricular injection of UII provokes various behavioral, cardiovascular, motor, and endocrine responses in the rat, but the distribution of the UII receptor in the central nervous system (CNS) has not yet been determined. In the present study, we have investigated the localization of UII receptor (GPR14) mRNA and UII binding sites in the rat CNS. RT‐PCR analysis revealed that the highest density of GPR14 mRNA occurred in the pontine nuclei. In situ hybridization histochemistry showed that the GPR14 gene is widely expressed in the brain and spinal cord. In particular, a strong hybridization signal was observed in the olfactory system, hippocampus, olfactory and medial amygdala, hypothalamus, epithalamus, several tegmental nuclei, locus coeruleus, pontine nuclei, motor nuclei, nucleus of the solitary tract, dorsal motor nucleus of the vagus, inferior olive, cerebellum, and spinal cord. Autoradiographic labeling of brain slices with radioiodinated UII showed the presence of UII‐binding sites in the lateral septum, bed nucleus of the stria terminalis, medial amygdaloid nucleus, anteroventral thalamus, anterior pretectal nucleus, pedunculopontine tegmental nucleus, pontine nuclei, geniculate nuclei, parabigeminal nucleus, dorsal endopiriform nucleus, and cerebellar cortex. Intense expression of the GPR14 gene in some hypothalamic nuclei (supraoptic, paraventricular, ventromedian, and arcuate nuclei), in limbic structures (amygdala and hippocampus), in medullary nuclei (solitary tract, dorsal motor nucleus of the vagus), and in motor control regions (cerebral and cerebellar cortex, substantia nigra, pontine nuclei) provides the anatomical substrate for the central effects of UII on behavioral, cardiovascular, neuroendocrine, and motor functions. The occurrence of GPR14 mRNA in cranial and spinal motoneurons is consistent with the reported autocrine/paracrine action of UII on motoneurons. J. Comp. Neurol. 495:21–36, 2006.


Current Opinion in Pharmacology | 2008

Implication of microRNAs in the cardiovascular system.

Elizabeth Scalbert; Antoine Bril

MicroRNAs (miRNAs) are endogenous, small, noncoding RNAs that regulate about 30% of protein-coding genes of the human genome. Thus far, more than 400 miRNAs have been cloned and sequenced in humans. Their biological importance, initially demonstrated in cancer, viral diseases and developmental processes, was more recently investigated in cardiovascular physiology and pathology. MiRNAs expression is tightly controlled in a tissue-specific and developmental stage-specific manner and some of them are highly and specifically expressed in cardiovascular tissues. Through the regulation of the expression of genes involved in cell growth, contractility and electrical conductance, cardiac miRNAs may play a major role in heart development and function. In vascular cells, miRNAs have been linked to vasculoproliferative conditions such as angiogenesis and neointimal lesion formation. Diagnostic use and therapeutic modulation of individual miRNAs or miRNA clusters in cardiovascular diseases will have to be further explored in the future. Molecules specifically regulating cardiovascular miRNAs, either mimicking or antagonizing miRNAs actions, will hopefully normalize dysfunctional gene networks and constitute a new therapy paradigm of cardiovascular diseases.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Melatonin improves cerebral circulation security margin in rats.

Olivier Régrigny; Philippe Delagrange; Elizabeth Scalbert; Jeffrey Atkinson; Isabelle Lartaud-Idjouadiene

Because melatonin is a cerebral vasoconstrictor agent, we tested whether it could shift the lower limit of cerebral blood flow autoregulation to a lower pressure level, by improving the cerebrovascular dilatory reserve, and thus widen the security margin. Cerebral blood flow and cerebrovascular resistance were measured by hydrogen clearance in the frontal cortex of adult male Wistar rats. The cerebrovasodilatory reserve was evaluated from the increase in the cerebral blood flow under hypercapnia. The lower limit of cerebral blood flow autoregulation was evaluated from the fall in cerebral blood flow following hypotensive hemorrhage. Rats received melatonin infusions of 60, 600, or 60,000 ng ⋅ kg-1 ⋅ h-1, a vehicle infusion, or no infusion ( n= 9 rats per group). Melatonin induced concentration-dependent cerebral vasoconstriction (up to 25% of the value for cerebrovascular resistance of the vehicle group). The increase in vasoconstrictor tone was accompanied by an improvement in the vasodilatory response to hypercapnia (+50 to +100% vs. vehicle) and by a shift in the lower limit of cerebral blood flow autoregulation to a lower mean arterial blood pressure level (from 90 to 50 mmHg). Because melatonin had no effect on baseline mean arterial blood pressure, the decrease in the lower limit of cerebral blood flow autoregulation led to an improvement in the cerebrovascular security margin (from 17% in vehicle to 30, 55, and 55% in the low-, medium-, and high-dose melatonin groups, respectively). This improvement in the security margin suggests that melatonin could play an important role in the regulation of cerebral blood flow and may diminish the risk of hypoperfusion-induced cerebral ischemia.Because melatonin is a cerebral vasoconstrictor agent, we tested whether it could shift the lower limit of cerebral blood flow autoregulation to a lower pressure level, by improving the cerebrovascular dilatory reserve, and thus widen the security margin. Cerebral blood flow and cerebrovascular resistance were measured by hydrogen clearance in the frontal cortex of adult male Wistar rats. The cerebrovasodilatory reserve was evaluated from the increase in the cerebral blood flow under hypercapnia. The lower limit of cerebral blood flow autoregulation was evaluated from the fall in cerebral blood flow following hypotensive hemorrhage. Rats received melatonin infusions of 60, 600, or 60,000 ng . kg-1 . h-1, a vehicle infusion, or no infusion (n = 9 rats per group). Melatonin induced concentration-dependent cerebral vasoconstriction (up to 25% of the value for cerebrovascular resistance of the vehicle group). The increase in vasoconstrictor tone was accompanied by an improvement in the vasodilatory response to hypercapnia (+50 to +100% vs. vehicle) and by a shift in the lower limit of cerebral blood flow autoregulation to a lower mean arterial blood pressure level (from 90 to 50 mmHg). Because melatonin had no effect on baseline mean arterial blood pressure, the decrease in the lower limit of cerebral blood flow autoregulation led to an improvement in the cerebrovascular security margin (from 17% in vehicle to 30, 55, and 55% in the low-, medium-, and high-dose melatonin groups, respectively). This improvement in the security margin suggests that melatonin could play an important role in the regulation of cerebral blood flow and may diminish the risk of hypoperfusion-induced cerebral ischemia.


Peptides | 2008

Structure–activity relationships of urotensin II and URP

Jérôme Leprince; David Chatenet; Christophe Dubessy; Alain Fournier; Bruno Pfeiffer; Elizabeth Scalbert; Pierre Renard; Pierre Pacaud; Hassan Oulyadi; Isabelle Ségalas-Milazzo; Laure Guilhaudis; Daniel Davoust; Marie-Christine Tonon; Hubert Vaudry

Urotensin II (U-II) and urotensin II-related peptide (URP) are the endogenous ligands for the orphan G-protein-coupled receptor GPR14 now renamed UT. At the periphery, U-II and/or URP exert a wide range of biological effects on cardiovascular tissues, airway smooth muscles, kidney and endocrine glands, while central administration of U-II elicits various behavioral and cardiovascular responses. There is also evidence that U-II and/or URP may be involved in a number of pathological conditions including heart failure, atherosclerosis, renal dysfunction and diabetes. Because of the potential involvement of the urotensinergic system in various physiopathological processes, there is need for the rational design of potent and selective ligands for the UT receptor. Structure-activity relationship studies have shown that the minimal sequence required to retain full biological activity is the conserved U-II(4-11) domain, in particular the Cys5 and Cys10 residues involved in the disulfide bridge, and the Phe6, Lys8 and Tyr9 residues. Free alpha-amino group and C-terminal COOH group are not necessary for the biological activity, and modifications of these radicals may even increase the stability of the analogs. Punctual substitution of native amino acids, notably Phe6 and Trp7, by particular residues generates analogs with antagonistic properties. These studies, which provide crucial information regarding the structural and conformational requirements for ligand-receptor interactions, will be of considerable importance for the design of novel UT ligands with increased selectivity, potency and stability, that may eventually lead to the development of innovative drugs.


British Journal of Pharmacology | 1999

Effects of melatonin on rat pial arteriolar diameter in vivo

Olivier Régrigny; Philippe Delagrange; Elizabeth Scalbert; Isabelle Lartaud-Idjouadiene; Jeffrey Atkinson; Jean-Marc Chillon

Based on our finding that melatonin decreased the lower limit of cerebral blood flow autoregulation in rat, we previously suggested that melatonin constricts cerebral arterioles. The goal of this study was to demonstrate this vasoconstrictor action and investigate the mechanisms involved. The effects of cumulative doses of melatonin (10−10 to 10−6 M) were examined in cerebral arterioles (30–50 μM) of male Wistar rats using an open skull preparation. Cerebral arterioles were exposed to two doses of melatonin (3×10−9 and 3×10−8 M) in the absence and presence of the mt1 and/or MT2 receptor antagonist, luzindole (2×10−6 M) and the Ca2+‐activated K+ (BKCa) channel blocker, tetraethylammonium (TEA+, 10−4 M). The effect of L‐nitro arginine methyl ester (L‐NAME, 10−8 M) was examined on arterioles after TEA+ superfusion. Cerebral arterioles were also exposed to the BKCa activator, NS1619 (10−5 M), and to sodium nitroprusside (SNP, 10−8 M) in the absence and presence of melatonin (3×10−8 M). Melatonin induced a dose‐dependent constriction with an EC50 of 3.0±0.1 nM and a maximal constriction of −15±1%. Luzindole abolished melatonin‐induced vasoconstriction. TEA+ induced significant vasoconstriction (−10±2%). No additional vasoconstriction was observed when melatonin was added to the aCSF in presence of TEA+, whereas L‐NAME still induced vasoconstriction (−10±1%). NS1619 induced vasodilatation (+11±1%) which was 50% less in presence of melatonin. Vasodilatation induced by SNP (+12±2%) was not diminished by melatonin. Melatonin directly constricts small diameter cerebral arterioles in rats. This vasoconstrictor effect is mediated by inhibition of BKCa channels following activation of mt1 and/or MT2 receptors.


Current Opinion in Pharmacology | 2008

Rho exchange factors in the cardiovascular system

Gervaise Loirand; Elizabeth Scalbert; Antoine Bril; Pierre Pacaud

Increasing evidence has accumulated to implicate overactivation of Rho protein as a common component for the pathogenesis of several cardiovascular disorders including hypertension, coronary and cerebral vasospasm, atherosclerosis, and diabetes. Recent advances in Rho protein signaling research indicate that the Rho exchange factors (Rho GEFs) which activate Rho proteins by catalyzing the exchange of GDP for GTP are major regulators of Rho protein activity. In addition, linkage analysis and association studies have recently identified Rho GEFs as susceptibility genes for cardiovascular diseases. All of these data are converging to suggest that as upstream activators of Rho proteins, Rho GEFs expressed in cardiovascular cells are good candidate targets for the treatment of cardiovascular disorders.


British Journal of Pharmacology | 2001

Respective contributions of α-adrenergic and non-adrenergic mechanisms in the hypotensive effect of imidazoline-like drugs

Véronique Bruban; Josiane Feldman; Hugues Greney; Monique Dontenwill; Stephan Schann; Christian Jarry; Marc Payard; Jean A. Boutin; Elizabeth Scalbert; Bruno Pfeiffer; Pierre Renard; Paul M. Vanhoutte; Pascal Bousquet

The hypotensive effect of imidazoline‐like drugs, such as clonidine, was first attributed to the exclusive stimulation of central α2‐adrenoceptors (α2ARs). However, a body of evidence suggests that non‐adrenergic mechanisms may also account for this hypotension. This work aims (i) to check whether imidazoline‐like drugs with no α2‐adrenergic agonist activity may alter blood pressure (BP) and (ii) to seek a possible interaction between such a drug and an α2ARs agonist α‐methylnoradrenaline (α‐MNA). We selected S23515 and S23757, two imidazoline‐like drugs with negligible affinities and activities at α2ARs but with high affinities for non‐adrenergic imidazoline binding sites (IBS). S23515 decreased BP dose‐dependently (−27±5% maximal effect) when administered intracisternally (i.c.) to anaesthetized rabbits. The hypotension induced by S23515 (100 μg kg−1 i.c.) was prevented by S23757 (1 mg kg−1 i.c.) and efaroxan (10 μg kg−1 i.c.), while these compounds, devoid of haemodynamic action by themselves, did not alter the hypotensive effect of α‐MNA (3 and 30 μg kg−1 i.c.). Moreover, the α2ARs antagonist rauwolscine (3 μg kg−1 i.c.) did not prevent the effect of S23515. Finally, whilst 3 μg kg−1 of S23515 or 0.5 μg kg−1 of α‐MNA had weak hypotensive effects, the sequential i.c. administration of these two drugs induced a marked hypotension (−23±2%). These results indicate that an imidazoline‐like drug with no α2‐adrenergic properties lowers BP and interacts synergistically with an α2ARs agonist.

Collaboration


Dive into the Elizabeth Scalbert's collaboration.

Top Co-Authors

Avatar

Pierre Renard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bruno Pfeiffer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Josiane Feldman

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascal Bousquet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Delagrange

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Bennejean

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Chatenet

Institut national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge