Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Townsend is active.

Publication


Featured researches published by Elizabeth Townsend.


Nature Genetics | 2003

Positional cloning of a novel gene influencing asthma from chromosome 2q14

Maxine Allen; Andrea Heinzmann; Gonçalo R. Abecasis; John Broxholme; Chris P. Ponting; Sumit Bhattacharyya; Jon Tinsley; Youming Zhang; Richard Holt; E. Yvonne Jones; Nick Lench; Alisoun H. Carey; Helene Jones; Nicholas J. Dickens; Claire Dimon; Rosie Nicholls; Crystal Baker; Luzheng Xue; Elizabeth Townsend; Michael Kabesch; Stephan K. Weiland; David Carr; Erika von Mutius; Ian M. Adcock; Peter J. Barnes; G. Mark Lathrop; M Edwards; Miriam F. Moffatt; William Cookson

Asthma is a common disease in children and young adults. Four separate reports have linked asthma and related phenotypes to an ill-defined interval between 2q14 and 2q32 (refs. 1–4), and two mouse genome screens have linked bronchial hyper-responsiveness to the region homologous to 2q14 (refs. 5,6). We found and replicated association between asthma and the D2S308 microsatellite, 800 kb distal to the IL1 cluster on 2q14. We sequenced the surrounding region and constructed a comprehensive, high-density, single-nucleotide polymorphism (SNP) linkage disequilibrium (LD) map. SNP association was limited to the initial exons of a solitary gene of 3.6 kb (DPP10), which extends over 1 Mb of genomic DNA. DPP10 encodes a homolog of dipeptidyl peptidases (DPPs) that cleave terminal dipeptides from cytokines and chemokines, and it presents a potential new target for asthma therapy.


Journal of Immunology | 2005

Prostaglandin D2 Causes Preferential Induction of Proinflammatory Th2 Cytokine Production through an Action on Chemoattractant Receptor-Like Molecule Expressed on Th2 Cells

Luzheng Xue; Shân L. Gyles; Frank R. Wettey; Lucien Gazi; Elizabeth Townsend; Michael George Hunter; Roy Pettipher

PGD2, produced by mast cells, has been detected in high concentrations at sites of allergic inflammation. It can stimulate vascular and other inflammatory responses by interaction with D prostanoid receptor (DP) and chemoattractant receptor-like molecule expressed on Th2 cells (CRTH2) receptors. A significant role for PGD2 in mediating allergic responses has been suggested based on the observation that enhanced eosinophilic lung inflammation and cytokine production is apparent in the allergen-challenged airways of transgenic mice overexpressing human PGD2 synthase, and PGD2 can enhance Th2 cytokine production in vitro from CD3/CD28-costimulated Th2 cells. In the present study, we investigated whether PGD2 has the ability to stimulate Th2 cytokine production in the absence of costimulation. At concentrations found at sites of allergic inflammation, PGD2 preferentially elicited the production of IL-4, IL-5, and IL-13 by human Th2 cells in a dose-dependent manner without affecting the level of the anti-inflammatory cytokine IL-10. Gene transcription peaked within 2 h, and protein release peaked ∼8 h after stimulation. The effect of PGD2 was mimicked by the selective CRTH2 agonist 13,14-dihydro-15-keto-PGD2 but not by the selective DP agonist BW245C, suggesting that the stimulation is mediated by CRTH2 and not DP. Ramatroban, a dual CRTH2/thromboxane-like prostanoid receptor antagonist, markedly inhibited Th2 cytokine production induced by PGD2, while the selective thromboxane-like prostanoid receptor antagonist SQ29548 was without effect. These data suggest that PGD2 preferentially up-regulates proinflammatory cytokine production in human Th2 cells through a CRTH2-dependent mechanism in the absence of any other costimulation and highlight the potential utility of CRTH2 antagonists in the treatment of allergic diseases.


Cancer Cell | 2016

The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice

Elizabeth Townsend; Mark A. Murakami; Alexandra N. Christodoulou; Amanda L. Christie; Johannes Köster; Tiffany DeSouza; Elizabeth A. Morgan; Scott P. Kallgren; Huiyun Liu; Shuo-Chieh Wu; Olivia Plana; Joan Montero; Kristen E. Stevenson; Prakash Rao; Raga Vadhi; Michael Andreeff; Philippe Armand; Karen K. Ballen; Patrizia Barzaghi-Rinaudo; Sarah Cahill; Rachael A. Clark; Vesselina G. Cooke; Matthew S. Davids; Daniel J. DeAngelo; David M. Dorfman; Hilary Eaton; Benjamin L. Ebert; Julia Etchin; Brant Firestone; David C. Fisher

More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease.


European Respiratory Journal | 2013

Inhibition of the asthmatic allergen challenge response by the CRTH2 antagonist OC000459

Dave Singh; Paul Cadden; Michael Hunter; Lisa Pearce Collins; Mike Perkins; Roy Pettipher; Elizabeth Townsend; Shân L. Vinall; Brian O'Connor

CRTH2 (chemoattractant receptor expressed on T-helper (Th) type 2 cells) is a G-protein-coupled receptor expressed by Th2 lymphocytes and eosinophils that mediates prostaglandin (PG)D2-driven chemotaxis. We studied the efficacy of the oral CRTH2 antagonist OC000459 in steroid-naïve asthmatic patients. A randomised, double-blind, placebo-controlled, two-way crossover study of 16 days’ treatment with OC000459 (200 mg twice daily) on the late (LAR) and early (EAR) asthmatic responses to bronchial allergen challenge was conducted, with 16 subjects completing the study. There was a 25.4% (95% CI 5.1–45.6%) reduction in the LAR area under the curve (AUC) for change in forced expiratory volume in 1 s with OC000459 compared with placebo (p=0.018) but no effect on the EAR. Sputum eosinophil counts at 1 day post-allergen challenge were lower after OC000459 treatment (p=0.002). PGD2-induced blood eosinophil shape change ex vivo was assessed at day 7 (n=7). The AUC of eosinophil shift for OC000459 was lower than placebo; the mean difference was -33.6% (95% CI -66.8– -0.4%; p=0.048). OC000459 treatment inhibited LAR and post-allergen increase in sputum eosinophils. This CRTH2 antagonist appears to inhibit allergic inflammation in asthma.


Nature Genetics | 2014

Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation

Andrew A. Lane; Bjoern Chapuy; Charles Y. Lin; Trevor Tivey; Hubo Li; Elizabeth Townsend; Diederik van Bodegom; Tovah A. Day; Shuo Chieh Wu; Huiyun Liu; Akinori Yoda; Gabriela Alexe; Anna C. Schinzel; Timothy J. Sullivan; Sébastien Malinge; Jordan E. Taylor; Kimberly Stegmaier; Jacob D. Jaffe; Michael Bustin; Geertruy te Kronnie; Shai Izraeli; Marian H. Harris; Kristen E. Stevenson; Donna Neuberg; Lewis B. Silverman; Stephen E. Sallan; James E. Bradner; William C. Hahn; John D. Crispino; David Pellman

Down syndrome confers a 20-fold increased risk of B cell acute lymphoblastic leukemia (B-ALL), and polysomy 21 is the most frequent somatic aneuploidy among all B-ALLs. Yet the mechanistic links between chromosome 21 triplication and B-ALL remain undefined. Here we show that germline triplication of only 31 genes orthologous to human chromosome 21q22 confers mouse progenitor B cell self renewal in vitro, maturation defects in vivo and B-ALL with either the BCR-ABL fusion protein or CRLF2 with activated JAK2. Chromosome 21q22 triplication suppresses histone H3 Lys27 trimethylation (H3K27me3) in progenitor B cells and B-ALLs, and bivalent genes with both H3K27me3 and H3K4me3 at their promoters in wild-type progenitor B cells are preferentially overexpressed in triplicated cells. Human B-ALLs with polysomy 21 are distinguished by their overexpression of genes marked with H3K27me3 in multiple cell types. Overexpression of HMGN1, a nucleosome remodeling protein encoded on chromosome 21q22 (refs. 3,4,5), suppresses H3K27me3 and promotes both B cell proliferation in vitro and B-ALL in vivo.


Cell Reports | 2015

Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia

Pierre Sujobert; Laury Poulain; Etienne Paubelle; Florence Zylbersztejn; Adrien Grenier; Mireille Lambert; Elizabeth Townsend; Jean-Marie Brusq; Edwige Nicodeme; Justine Decrooqc; Ina Nepstad; Alexa S. Green; Johanna Mondesir; Nathalie Jacque; Alexandra N. Christodoulou; Tiffany DeSouza; Olivier Hermine; Marc Foretz; Benoit Viollet; Catherine Lacombe; Patrick Mayeux; David M. Weinstock; Ivan C. Moura; Didier Bouscary; Jerome Tamburini

AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.


Cancer Cell | 2016

Erratum: The Public Repository of Xenografts Enables Discovery and Randomized Phase II-like Trials in Mice (Cancer Cell (2016) 29 (574–586))

Elizabeth Townsend; Mark A. Murakami; Alexandra N. Christodoulou; Amanda L. Christie; Johannes Köster; Tiffany DeSouza; Elizabeth A. Morgan; Scott P. Kallgren; Huiyun Liu; Shuo Chieh Wu; Olivia Plana; Joan Montero; Kristen E. Stevenson; Prakash Rao; Raga Vadhi; Michael Andreeff; Philippe Armand; Karen K. Ballen; Patrizia Barzaghi-Rinaudo; Sarah Cahill; Rachael A. Clark; Vesselina G. Cooke; Matthew S. Davids; Daniel J. DeAngelo; David M. Dorfman; Hilary Eaton; Benjamin L. Ebert; Julia Etchin; Brant Firestone; David C. Fisher

Elizabeth C. Townsend, Mark A. Murakami, Alexandra Christodoulou, Amanda L. Christie, Johannes Köster, Tiffany A. DeSouza, Elizabeth A. Morgan, Scott P. Kallgren, Huiyun Liu, Shuo-Chieh Wu, Olivia Plana, Joan Montero, Kristen E. Stevenson, Prakash Rao, Raga Vadhi, Michael Andreeff, Philippe Armand, Karen K. Ballen, Patrizia Barzaghi-Rinaudo, Sarah Cahill, Rachael A. Clark, Vesselina G. Cooke, Matthew S. Davids, Daniel J. DeAngelo, David M. Dorfman, Hilary Eaton, Benjamin L. Ebert, Julia Etchin, Brant Firestone, David C. Fisher, Arnold S. Freedman, Ilene A. Galinsky, Hui Gao, Jacqueline S. Garcia, Francine Garnache-Ottou, Timothy A. Graubert, Alejandro Gutierrez, Ensar Halilovic, Marian H. Harris, Zachary T. Herbert, Steven M. Horwitz, Giorgio Inghirami, Andrew M. Intlekofer, Moriko Ito, Shai Izraeli, Eric D. Jacobsen, Caron A. Jacobson, Sébastien Jeay, Irmela Jeremias, Michelle A. Kelliher, Raphael Koch, Marina Konopleva, Nadja Kopp, Steven M. Kornblau, Andrew L. Kung, Thomas S. Kupper, Nicole R. LeBoeuf, Ann S. LaCasce, Emma Lees, Loretta S. Li, A. Thomas Look, Masato Murakami, Markus Muschen, Donna Neuberg, Samuel Y. Ng, Oreofe O. Odejide, Stuart H. Orkin, Rachel R. Paquette, Andrew E. Place, Justine E. Roderick, Jeremy A. Ryan, Stephen E. Sallan, Brent Shoji, Lewis B. Silverman, Robert J. Soiffer, David P. Steensma, Kimberly Stegmaier, Richard M. Stone, Jerome Tamburini, Aaron R. Thorner, Paul van Hummelen, Martha Wadleigh, Marion Wiesmann, Andrew P. Weng, Jens U. Wuerthner, David A. Williams, Bruce M. Wollison, Andrew A. Lane, Anthony Letai, Monica M. Bertagnolli, Jerome Ritz, Myles Brown, Henry Long, Jon C. Aster, Margaret A. Shipp, James D. Griffin, and David M. Weinstock* *Correspondence: [email protected] http://dx.doi.org/10.1016/j.ccell.2016.06.008


Science Advances | 2015

Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia.

Alexa S. Green; Thiago Trovati Maciel; Chae Yin; Fetta Mazed; Elizabeth Townsend; Sylvain Pilorge; Mireille Lambert; Etienne Paubelle; Arnaud Jacquel; Florence Zylbersztejn; Justine Decroocq; Laury Poulain; Pierre Sujobert; Nathalie Jacque; Kevin Adam; Jason Cc So; Olivier Kosmider; Patrick Auberger; Olivier Hermine; David M. Weinstock; Catherine Lacombe; Patrick Mayeux; Gary Vanasse; Anskar Y. H. Leung; Ivan C. Moura; Didier Bouscary; Jerome Tamburini

Synergy between FLT3 and Pim kinase inhibition in acute myeloid leukemia with FLT3-ITD mutation. ABSTRACT Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD–induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD+ cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy.


Cancer Research | 2014

Abstract 433: Triplication of HMGN1 promotes B cell acute lymphoblastic leukemia (B-ALL) through suppression of H3K27me3

Andrew A. Lane; Bjoern Chapuy; Charles Y. Lin; Trevor Tivey; Hubo Li; Elizabeth Townsend; Diederik van Bodegom; Tovah A. Day; Shuo-Chieh Wu; Huiyun Liu; Akinori Yoda; Gabriela Alexe; Anna C. Schinzel; Timothy J. Sullivan; Sébastien Malinge; Jordan E. Taylor; Kimberly Stegmaier; Jacob D. Jaffe; Michael Bustin; Geertruy te Kronnie; Shai Izraeli; Marian H. Harris; Kristen E. Stevenson; Donna Neuberg; Lewis B. Silverman; Steven E. Sallan; James E. Bradner; William C. Hahn; John D. Crispino; David Pellman

Our goal is to identify oncogenic loci in regions of recurrent DNA copy number alterations in cancer. Constitutional trisomy 21 (Down syndrome) carries a 20-fold increased risk of B-ALL, and chr.21 gains are the most common acquired aneuploidy in B-ALL. Interstitial amplification in the chr.21q22 region (iAMP21) is also a recurrent finding in B-ALL and carries a poor prognosis. However, the gene(s) on chr.21 responsible for this association remain unclear. We studied the Ts1Rhr mouse, which carries germline triplication of 31 genes homologous to human chr.21q22. Chr.21q22 triplication was sufficient to promote B cell autonomous self-renewal and maturation defects, and cooperated with BCR-ABL or CRLF2 with JAK2 R683G to accelerate leukemogenesis. Chr.21q22 triplication also resulted in histone H3K27 hypomethylation at gene promoters, and the expression signature of triplicated B cells was enriched for genes targeted by polycomb repressor complex 2 (PRC2), which trimethylates H3K27. Thus, chr.21q22 triplication may deregulate B cell development by causing H3K27 hypomethylation at genes critical for progenitor cell growth. In support of this hypothesis, pharmacologic inhibition of PRC2 function was sufficient to confer self-renewal in wild-type B cells, while inhibition of H3K27 demethylases blocked self-renewal induced by chr.21q22 triplication. In three independent B-ALL cohorts, PRC2/H3K27 gene signatures distinguished leukemias with +21 from those without, validating the same biology in human disease. One of the 31 triplicated genes, HMGN1, encodes a nucleosome binding protein known to modulate chromatin structure and facilitate transcriptional activation. When we overexpressed HMGN1 in BaF3 proB cells, H3K27me3 decreased proportionally to the level of overexpression. We next knocked down each of the 31 triplicated genes with lentivirally-expressed shRNAs (5 per gene) and assessed the effects on growth of Ts1Rhr and wild-type primary B cells. Strikingly, Hmgn1 was the top scoring gene and all 5 hairpins targeting Hmgn1 were depleted in the assay. Finally, we studied transgenic mice (HMGN1_OE) that overexpress human HMGN1 (∼2-fold total overexpression). HMGN1_OE mice had a defect in B cell maturation, increased proB colony forming capacity, and a transcriptional signature overlapping with that of triplication of all 31 Ts1Rhr genes. In a bone marrow transplant model driven by BCR-ABL, recipients of HMGN1_OE bone marrow developed B-ALL with decreased latency (median 33 days vs not reached) and increased penetrance (17/18 vs 4/17 mice died by 80 days; leukemia-free survival difference P Citation Format: Andrew A. Lane, Bjoern Chapuy, Charles Y. Lin, Trevor Tivey, Hubo Li, Elizabeth Townsend, Diederik van Bodegom, Tovah A. Day, Shuo-Chieh Wu, Huiyun Liu, Akinori Yoda, Gabriela Alexe, Anna Schinzel, Timothy J. Sullivan, Sebastien Malinge, Jordan Taylor, Kimberly Stegmaier, Jacob Jaffe, Michael Bustin, Geertruy te Kronnie, Shai Izraeli, Marian Harris, Kristen Stevenson, Donna Neuberg, Lewis B. Silverman, Steven E. Sallan, James E. Bradner, William C. Hahn, John D. Crispino, David Pellman, David M. Weinstock. Triplication of HMGN1 promotes B cell acute lymphoblastic leukemia (B-ALL) through suppression of H3K27me3. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 433. doi:10.1158/1538-7445.AM2014-433


Blood | 2015

The MDM2 Inhibitor NVP-CGM097 Is Highly Active in a Randomized Preclinical Trial of B-Cell Acute Lymphoblastic Leukemia Patient Derived Xenografts

Elizabeth Townsend; Tiffany DeSouza; Mark A. Murakami; Joan Montero; Kristen E. Stevenson; Amanda L. Christie; Alexandra N Christodolou; Una Vojinovic; Nadja Kopp; Patrizia Barzaghi-Rinaudo; Masato Murakami; Anthony Letai; Sébastien Jeay; Jens Wuerthner; Ensar Halilovic; David M. Weinstock

Collaboration


Dive into the Elizabeth Townsend's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etienne Paubelle

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Jerome Tamburini

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Mayeux

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge