Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizabeth Vierling is active.

Publication


Featured researches published by Elizabeth Vierling.


The EMBO Journal | 1997

A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state.

Garrett J. Lee; Alan M. Roseman; Helen R. Saibil; Elizabeth Vierling

The small heat shock proteins (sHSPs) recently have been reported to have molecular chaperone activity in vitro; however, the mechanism of this activity is poorly defined. We found that HSP18.1, a dodecameric sHSP from pea, prevented the aggregation of malate dehydrogenase (MDH) and glyceraldehyde‐3‐phosphate dehydrogenase heated to 45°C. Under conditions in which HSP18.1 prevented aggregation of substrates, size‐exclusion chromatography and electron microscopy revealed that denatured substrates coated the HSP18.1 dodecamers to form expanded complexes. SDS–PAGE of isolated complexes demonstrated that each HSP18.1 dodecamer can bind the equivalent of 12 MDH monomers, indicating that HSP18.1 has a large capacity for non‐native substrates compared with other known molecular chaperones. Photoincorporation of the hydrophobic probe 1,1′‐bi(4‐anilino)naphthalene‐5,5′‐disulfonic acid (bis‐ANS) into a conserved C‐terminal region of HSP18.1 increased reversibly with increasing temperature, but was blocked by prior binding of MDH, suggesting that bis‐ANS incorporates proximal to substrate binding regions and that substrate–HSP18.1 interactions are hydrophobic. We also show that heat‐denatured firefly luciferase bound to HSP18.1, in contrast to heat‐aggregated luciferase, can be reactivated in the presence of rabbit reticulocyte or wheat germ extracts in an ATP‐dependent process. These data support a model in which sHSPs prevent protein aggregation and facilitate substrate refolding in conjunction with other molecular chaperones.


Nature Structural & Molecular Biology | 2001

Crystal structure and assembly of a eukaryotic small heat shock protein.

R.L.M Van Montfort; Eman Basha; K.L Friedrich; Christine Slingsby; Elizabeth Vierling

The 2.7 Å structure of wheat HSP16.9, a member of the small heat shock proteins (sHSPs), indicates how its α-crystallin domain and flanking extensions assemble into a dodecameric double disk. The folding of the monomer and assembly of the oligomer are mutually interdependent, involving strand exchange, helix swapping, loose knots and hinged extensions. In support of the chaperone mechanism, the substrate-bound dimers, in temperature-dependent equilibrium with higher assembly forms, have unfolded N-terminal arms and exposed conserved hydrophobic binding sites on the α-crystallin domain. The structure also provides a model by which members of the sHSP protein family bind unfolded substrates, which are involved in a variety of neurodegenerative diseases and cataract formation.


Plant Molecular Biology | 1996

Molecular chaperones and protein folding in plants.

Rebecca S. Boston; Paul V. Viitanen; Elizabeth Vierling

Protein folding in vivo is mediated by an array of proteins that act either as ‘foldases’ or ‘molecular chaperones’. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.


Plant Physiology | 2005

Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance.

Jane Larkindale; Jennifer D. Hall; Marc R. Knight; Elizabeth Vierling

To investigate the importance of different processes to heat stress tolerance, 45 Arabidopsis (Arabidopsis thaliana) mutants and one transgenic line were tested for basal and acquired thermotolerance at different stages of growth. Plants tested were defective in signaling pathways (abscisic acid, salicylic acid, ethylene, and oxidative burst signaling) and in reactive oxygen metabolism (ascorbic acid or glutathione production, catalase) or had previously been found to have temperature-related phenotypes (e.g. fatty acid desaturase mutants, uvh6). Mutants were assessed for thermotolerance defects in seed germination, hypocotyl elongation, root growth, and seedling survival. To assess oxidative damage and alterations in the heat shock response, thiobarbituric acid reactive substances, heat shock protein 101, and small heat shock protein levels were determined. Fifteen mutants showed significant phenotypes. Abscisic acid (ABA) signaling mutants (abi1 and abi2) and the UV-sensitive mutant, uvh6, showed the strongest defects in acquired thermotolerance of root growth and seedling survival. Mutations in nicotinamide adenine dinucleotide phosphate oxidase homolog genes (atrbohB and D), ABA biosynthesis mutants (aba1, aba2, and aba3), and NahG transgenic lines (salicylic acid deficient) showed weaker defects. Ethylene signaling mutants (ein2 and etr1) and reactive oxygen metabolism mutants (vtc1, vtc2, npq1, and cad2) were more defective in basal than acquired thermotolerance, especially under high light. All mutants accumulated wild-type levels of heat shock protein 101 and small heat shock proteins. These data indicate that, separate from heat shock protein induction, ABA, active oxygen species, and salicylic acid pathways are involved in acquired thermotolerance and that UVH6 plays a significant role in temperature responses in addition to its role in UV stress.


The Plant Cell | 2000

Heat Shock Protein 101 Plays a Crucial Role in Thermotolerance in Arabidopsis

Christine Queitsch; Suk Whan Hong; Elizabeth Vierling; Susan Lindquist

Plants are sessile organisms, and their ability to adapt to stress is crucial for survival in natural environments. Many observations suggest a relationship between stress tolerance and heat shock proteins (HSPs) in plants, but the roles of individual HSPs are poorly characterized. We report that transgenic Arabidopsis plants expressing less than usual amounts of HSP101, a result of either antisense inhibition or cosuppression, grew at normal rates but had a severely diminished capacity to acquire heat tolerance after mild conditioning pretreatments. The naturally high tolerance of germinating seeds, which express HSP101 as a result of developmental regulation, was also profoundly decreased. Conversely, plants constitutively expressing HSP101 tolerated sudden shifts to extreme temperatures better than did vector controls. We conclude that HSP101 plays a pivotal role in heat tolerance in Arabidopsis. Given the high evolutionary conservation of this protein and the fact that altering HSP101 expression had no detrimental effects on normal growth or development, one should be able to manipulate the stress tolerance of other plants by altering the expression of this protein.


Plant Physiology | 2007

Core Genome Responses Involved in Acclimation to High Temperature

Jane Larkindale; Elizabeth Vierling

Plants can acclimate rapidly to environmental conditions, including high temperatures. To identify molecular events important for acquired thermotolerance, we compared viability and transcript profiles of Arabidopsis thaliana treated to severe heat stress (45°C) without acclimation or following two different acclimation treatments. Notably, a gradual increase to 45°C (22°C to 45°C over 6 h) led to higher survival and to more and higher-fold transcript changes than a step-wise acclimation (90 min at 38°C plus 120 min at 22°C before 45°C). There were significant differences in the total spectrum of transcript changes in the two treatments, but core components of heat acclimation were apparent in the overlap between treatments, emphasizing the importance of performing transcriptome analysis in the context of physiological response. In addition to documenting increases in transcripts of specific genes involved in processes predicted to be required for thermotolerance (i.e. protection of proteins and of translation, limiting oxidative stress), we also found decreases in transcripts (i.e. for programmed cell death, basic metabolism, and biotic stress responses), which are likely equally important for acclimation. Similar protective effects may also be achieved differently, such as prevention of proline accumulation, which is toxic at elevated temperatures and which was reduced by both acclimation treatments but was associated with transcript changes predicted to either reduce proline synthesis or increase degradation in the two acclimation treatments. Finally, phenotypic analysis of T-DNA insertion mutants of genes identified in this analysis defined eight new genes involved in heat acclimation, including cytosolic ascorbate peroxidase and the transcription factors HsfA7a (heat shock transcription factor A7a) and NF-X1.


Molecular Microbiology | 2003

Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation.

Axel Mogk; Elke Deuerling; Sonja Vorderwülbecke; Elizabeth Vierling; Bernd Bukau

Small heat shock proteins (sHsps) can efficiently prevent the aggregation of unfolded proteins in vitro. However, how this in vitro activity translates to function in vivo is poorly understood. We demonstrate that sHsps of Escherichia coli, IbpA and IbpB, co‐operate with ClpB and the DnaK system in vitro and in vivo, forming a functional triade of chaperones. IbpA/IbpB and ClpB support independently and co‐operatively the DnaK system in reversing protein aggregation. A ΔibpABΔclpB double mutant exhibits strongly increased protein aggregation at 42°C compared with the single mutants. sHsp and ClpB function become essential for cell viability at 37°C if DnaK levels are reduced. The DnaK requirement for growth is increasingly higher for ΔibpAB, ΔclpB, and the double ΔibpABΔclpB mutant cells, establishing the positions of sHsps and ClpB in this chaperone triade.


Trends in Biochemical Sciences | 2012

Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions

Eman Basha; Heather O’Neill; Elizabeth Vierling

The small heat shock proteins (sHSPs) and the related α-crystallins (αCs) are virtually ubiquitous proteins that are strongly induced by a variety of stresses, but that also function constitutively in multiple cell types in many organisms. Extensive research has demonstrated that a majority of sHSPs and αCs can act as ATP-independent molecular chaperones by binding denaturing proteins and thereby protecting cells from damage due to irreversible protein aggregation. As a result of their diverse evolutionary history, their connection to inherited human diseases, and their novel protein dynamics, sHSPs and αCs are of significant interest to many areas of biology and biochemistry. However, it is increasingly clear that no single model is sufficient to describe the structure, function or mechanism of action of sHSPs and αCs. In this review, we discuss recent data that provide insight into the variety of structures of these proteins, their dynamic behavior, how they recognize substrates, and their many possible cellular roles.


Cell Stress & Chaperones | 2001

The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins)

Klaus-Dieter Scharf; Masood Siddique; Elizabeth Vierling

Abstract Comprehensive analysis of the Arabidopsis genome revealed a total of 13 sHsps belonging to 6 classes defined on the basis of their intracellular localization and sequence relatedness plus 6 ORFs encoding proteins distantly related to the cytosolic class CI or the plastidial class of sHsps. The complexity of the Arabidopsis sHsp family far exceeds that in any other organism investigated to date. Furthermore, we have identified a new family of ORFs encoding multidomain proteins that contain one or more regions with homology to the ACD (Acd proteins). The functions of the Acd proteins and the role of their ACDs remain to be investigated.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Small heat-shock proteins regulate membrane lipid polymorphism

Nelly M. Tsvetkova; Ibolya Horváth; Zsolt Török; Willem F. Wolkers; Zsolt Balogi; Natalia Shigapova; Lois M. Crowe; Fern Tablin; Elizabeth Vierling; John H. Crowe; László Vígh

Thermal stress in living cells produces multiple changes that ultimately affect membrane structure and function. We report that two members of the family of small heat-shock proteins (sHsp) (α-crystallin and Synechocystis HSP17) have stabilizing effects on model membranes formed of synthetic and cyanobacterial lipids. In anionic membranes of dimyristoylphosphatidylglycerol and dimyristoylphosphatidylserine, both HSP17 and α-crystallin strongly stabilize the liquid-crystalline state. Evidence from infrared spectroscopy indicates that lipid/sHsp interactions are mediated by the polar headgroup region and that the proteins strongly affect the hydrophobic core. In membranes composed of the nonbilayer lipid dielaidoylphosphatidylethanolamine, both HSP17 and α-crystallin inhibit the formation of inverted hexagonal structure and stabilize the bilayer liquid-crystalline state, suggesting that sHsps can modulate membrane lipid polymorphism. In membranes composed of monogalactosyldiacylglycerol and phosphatidylglycerol (both enriched with unsaturated fatty acids) isolated from Synechocystis thylakoids, HSP17 and α-crystallin increase the molecular order in the fluid-like state. The data show that the nature of sHsp/membrane interactions depends on the lipid composition and extent of lipid unsaturation, and that sHsps can regulate membrane fluidity. We infer from these results that the association between sHsps and membranes may constitute a general mechanism that preserves membrane integrity during thermal fluctuations.

Collaboration


Dive into the Elizabeth Vierling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ung Lee

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge