Elizabeth Wheeler
The Marine Mammal Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elizabeth Wheeler.
Journal of General Virology | 2009
Terry Fei Fan Ng; Wm Kirk Suedmeyer; Elizabeth Wheeler; Frances M. D. Gulland; Mya Breitbart
A viral metagenomic study was performed to investigate potential viral pathogens associated with a mortality event of three captive California sea lions (Zalophus californianus). This study identified a novel California sea lion anellovirus (ZcAV), with 35 % amino acid identity in the ORF1 region to feline anelloviruses. The double-stranded replicative form of ZcAV was detected in lung tissue, suggesting that ZcAV replicates in sea lion lungs. Specific PCR revealed the presence of ZcAV in the lung tissue of all three sea lions involved in the mortality event, but not in three other sea lions from the same zoo. In addition, ZcAV was detected at low frequency (11 %) in the lungs of wild sea lions. The higher prevalence of ZcAV and presence of the double-stranded replicative form in the lungs of sea lions from the mortality event suggest that ZcAV was associated with the death of these animals.
Journal of Wildlife Diseases | 2009
Tracey Goldstein; Tanja S. Zabka; Robert L. DeLong; Elizabeth Wheeler; Gina M. Ylitalo; Sibel Bargu; Mary W. Silver; Tod A. Leighfield; Frances M. Van Dolah; Gregg W. Langlois; Inga F. Sidor; J. Lawrence Dunn; Frances M. D. Gulland
Domoic acid is a glutaminergic neurotoxin produced by marine algae such as Pseudo-nitzschia australis. California sea lions (Zalophus californianus) ingest the toxin when foraging on planktivorous fish. Adult females comprise 60% of stranded animals admitted for rehabilitation due to acute domoic acid toxicosis and commonly suffer from reproductive failure, including abortions and premature live births. Domoic acid has been shown to cross the placenta exposing the fetus to the toxin. To determine whether domoic acid was playing a role in reproductive failure in sea lion rookeries, 67 aborted and live-born premature pups were sampled on San Miguel Island in 2005 and 2006 to investigate the causes for reproductive failure. Analyses included domoic acid, contaminant and infectious disease testing, and histologic examination. Pseudo-nitzschia spp. were present both in the environment and in sea lion feces, and domoic acid was detected in the sea lion feces and in 17% of pup samples tested. Histopathologic findings included systemic and localized inflammation and bacterial infections of amniotic origin, placental abruption, and brain edema. The primary lesion in five animals with measurable domoic acid concentrations was brain edema, a common finding and, in some cases, the only lesion observed in aborted premature pups born to domoic acid–intoxicated females in rehabilitation. Blubber organochlorine concentrations were lower than those measured previously in premature sea lion pups collected in the 1970s. While the etiology of abortion and premature parturition was varied in this study, these results suggest that domoic acid contributes to reproductive failure on California sea lion rookeries.
Journal of General Virology | 2011
Terry Fei Fan Ng; Elizabeth Wheeler; Denise J. Greig; Thomas B. Waltzek; Frances M. D. Gulland; Mya Breitbart
To investigate viral pathogens potentially involved in a mortality event of 21 Pacific harbor seals (Phoca vitulina richardsii) in California in 2000, viral metagenomics was performed directly on lung samples from five individuals. Metagenomics revealed a novel seal anellovirus (SealAV), which clusters phylogenetically with anelloviruses from California sea lions and domestic cats. Using specific PCR, SealAV was identified in lung tissue from two of five animals involved in the 2000 mortality event, as well as one of 20 harbor seal samples examined post-mortem in 2008. The identification of SealAV in multiple years demonstrates that this virus is persistent in the harbor seal population. SealAV is the second anellovirus reported in the lungs of pinnipeds, suggesting that anellovirus infections may be common amongst marine mammals and that more research is needed to understand the roles of these viruses in marine mammal health and disease.
Diseases of Aquatic Organisms | 2010
Eric W. Montie; Elizabeth Wheeler; Nicola Pussini; Thomas W.K. Battey; Jerome A. Barakos; Sophie Dennison; Kathleen M. Colegrove; Frances M. D. Gulland
Our goal in this study was to compare magnetic resonance images and volumes of brain structures obtained alive versus postmortem of California sea lions Zalophus californianus exhibiting clinical signs of domoic acid (DA) toxicosis and those exhibiting normal behavior. Proton density-(PD) and T2-weighted images of postmortem-intact brains, up to 48 h after death, provided similar quality to images acquired from live sea lions. Volumes of gray matter (GM) and white matter (WM) of the cerebral hemispheres were similar to volumes calculated from images acquired when the sea lions were alive. However, cerebrospinal fluid (CSF) volumes decreased due to leakage. Hippocampal volumes from postmortem-intact images were useful for diagnosing unilateral and bilateral atrophy, consequences of DA toxicosis. These volumes were similar to the volumes in the live sea lion studies, up to 48 h postmortem. Imaging formalin-fixed brains provided some information on brain structure; however, images of the hippocampus and surrounding structures were of poorer quality compared to the images acquired alive and postmortem-intact. Despite these issues, volumes of cerebral GM and WM, as well as the hippocampus, were similar to volumes calculated from images of live sea lions and sufficient to diagnose hippocampal atrophy. Thus, postmortem MRI scanning (either intact or formalin-fixed) with volumetric analysis can be used to investigate the acute, chronic and possible developmental effects of DA on the brain of California sea lions.
Science of The Total Environment | 2011
Denise J. Greig; Gina M. Ylitalo; Elizabeth Wheeler; Daryle Boyd; Frances Gulland; Gladys K. Yanagida; James T. Harvey; Ailsa J. Hall
Persistent organic pollutants have been associated with disease susceptibility and decreased immunity in marine mammals. Concentrations of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), polybrominated diphenyl ethers (PBDEs), chlordanes (CHLDs), and hexachlorocyclohexane isomers (HCHs) were evaluated in terms of stage of development and likely exposure routes (in utero, suckling, fasting) in the blubber of 202 stranded and wild-caught, primarily young of the year (n=177), harbor seals (Phoca vitulina) in the central California coast. This is the first report of HCH concentrations in the blubber of California seals. Lipid normalized concentrations ranged from 200 to 330,000 ng/g for sum PCBs, 320-1,500,000 ng/g for sum DDTs, 23-63,000 ng/g for sum PBDEs, 29-29,000 ng/g for sum CHLDs, and 2-780 ng/g for sum HCHs. The highest concentrations were observed in harbor seal pups that suckled in the wild and then lost mass during the post-weaning fast. Among the pups sampled in the wild and those released from rehabilitation, there were no differences in mass, blubber depth, or percent lipid although contaminant concentrations were significantly higher in the pups which nursed in the wild. When geographic differences were evaluated in a subset of newborn animals collected near their birth locations, the ratio of sum DDTs to sum PCBs was significantly greater in samples from an area with agricultural inputs (Monterey), than one with industrial inputs (San Francisco Bay). A principal components analysis distinguished between seals from San Francisco Bay and Monterey Bay based on specific PCB and PBDE congeners and DDT metabolites. These data illustrate the important influence of life stage, nutritional status, and location on blubber contaminant levels, and thus the need to consider these factors when interpreting single sample measurements in marine mammals.
Diseases of Aquatic Organisms | 2014
Denise J. Greig; Frances M. D. Gulland; Woutrina A. Smith; Patricia A. Conrad; Cara L. Field; Michelle Fleetwood; James T. Harvey; Hon S. Ip; Spencer S. Jang; Andrea E. Packham; Elizabeth Wheeler; Ailsa J. Hall
The infection status of harbor seals Phoca vitulina in central California, USA, was evaluated through broad surveillance for pathogens in stranded and wild-caught animals from 2001 to 2008, with most samples collected in 2007 and 2008. Stranded animals from Mendocino County to San Luis Obispo County were sampled at a rehabilitation facility: The Marine Mammal Center (TMMC, n = 175); wild-caught animals were sampled at 2 locations: San Francisco Bay (SF, n = 78) and Tomales Bay (TB, n = 97), that differed in degree of urbanization. Low prevalences of Salmonella, Campylobacter, Giardia, and Cryptosporidium were detected in the feces of stranded and wild-caught seals. Clostridium perfringens and Escherichia coli were more prevalent in the feces of stranded (58% [78 out of 135] and 76% [102 out of 135]) than wild-caught (42% [45 out of 106] and 66% [68 out of 106]) seals, whereas Vibrio spp. were 16 times more likely to be cultured from the feces of seals from SF than TB or TMMC (p < 0.005). Brucella DNA was detected in 3.4% of dead stranded harbor seals (2 out of 58). Type A influenza was isolated from feces of 1 out of 96 wild-caught seals. Exposure to Toxoplasma gondii, Sarcocystis neurona, and type A influenza was only detected in the wild-caught harbor seals (post-weaning age classes), whereas antibody titers to Leptospira spp. were detected in stranded and wild-caught seals. No stranded (n = 109) or wild-caught (n = 217) harbor seals had antibodies to phocine distemper virus, although a single low titer to canine distemper virus was detected. These results highlight the role of harbor seals as sentinel species for zoonotic and terrestrial pathogens in the marine environment.
Aquatic Mammals | 2012
Sarah Wilkin; Joe Cordaro; Frances M. D. Gulland; Elizabeth Wheeler; Robin C. Dunkin; Teri Sigler; Dave Casper; Michelle Berman; Moe Flannery; Spencer E. Fire; Zhihong Wang; Kathleen M. Colegrove; Jason D. Baker
In 2007, the apparent increase in the number of harbor porpoises (Phocoena phocoena) stranding along the central California coast compared to the number of strandings the previous year resulted in the declaration of an Unusual Mortality Event by the National Marine Fisheries Service. A statistically significant increase in strandings occurred in 2008 and 2009, with more than twice the mean annual number of strandings documented per year in the previous decade occurring each year, but then strandings decreased in 2010. No single cause of mortality explained all the strandings, and there were no significant changes in age class or sex of strandings in 2008 and 2009. Trauma, including interspecific aggression and fisheries interactions, was the most common cause of death, and blunt force trauma increased significantly in August through October of 2008 and 2009. Domoic acid toxicosis was documented for the first time in this species. Although the cause of death for many strandings was unidentified, the increase in strandings in 2008-2009 reflects an increase in blunt trauma rather than an epizootic of disease.
Veterinary Ophthalmology | 2015
Erin P. Wright; Lynnette F. Waugh; Tracey Goldstein; Katie S. Freeman; Terra R. Kelly; Elizabeth Wheeler; Brett R. Smith; Frances M. D. Gulland
OBJECTIVE To assess whether corneal lesions in stranded pinnipeds were associated with viral infections, and to identify the potential pathogen(s) associated with the lesions. ANIMALS STUDIED Twenty-nine California sea lions (Zalophus californianus), 18 northern elephant seals (Mirounga angustirostris), and 34 Pacific harbor seals (Phoca vitulina richardsii). PROCEDURE DNA and RNA were extracted from ocular swabs, corneal tissue, and aqueous humor and screened for herpesvirus, adenovirus, poxvirus, and calicivirus families by PCR. RESULTS The results indicated a high overall prevalence of viruses, with adenoviruses and herpesviruses detected in all three host species. Three novel adenoviruses (PhAdV-1, PhAdV-2, OtAdV-2) and two novel herpesviruses (PhHV-6, OtHV-4) were detected. There were no statistical differences in the prevalence of viral infection or coinfection among groups of individuals with or without corneal lesions, nor were lesion type, onset, or presence of concurrent disease significantly associated with a viral infection. CONCLUSIONS The results suggested that viral presence in ocular tissues was common, not significantly associated with ocular disease and thus should not preclude release of an otherwise healthy animal. We could not confirm a correlation of virus presence with lesion due to the high percentage of virus-positive, clinically normal animals. This implied that seals and sea lions can have ocular tissues infected with several viruses without having readily evident associated lesions. This difficulty in correlating viral presence, particularly herpesviruses, with ocular lesions was also a common finding in studies with terrestrial species and highlighted the difficulty of confirming a virus as a primary pathogen in ocular lesions.
Journal of Wildlife Diseases | 2012
Shannon Mcleland; Colleen Duncan; Terry R. Spraker; Elizabeth Wheeler; Shawn R. Lockhart; Frances M. D. Gulland
Sporadic cases of cryptococcosis have been reported in marine mammals, typically due to Cryptococcus neoformans and, more recently, to Cryptococcus gattii in cetaceans. Cryptococcus albidus, a ubiquitous fungal species not typically considered to be pathogenic, was recovered from a juvenile California sea lion (Zalophus californianus) rescued near San Francisco Bay, California. Yeast morphologically consistent with a Cryp-tococcus sp. was identified histologically in a lymph node and C. albidus was identified by an rDNA sequence from the lung. Infection with C. albidus was thought to have contributed to mortality in this sea lion, along with concurrent bacterial pneumonia. Cryptococcus albidus should be considered as a potential pathogen with a role in marine mammal morbidity and mortality.
Harmful Algae | 2012
Eric W. Montie; Elizabeth Wheeler; Nicola Pussini; Thomas W.K. Battey; William Van Bonn; Frances M. D. Gulland