Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizaveta Starodubova is active.

Publication


Featured researches published by Elizaveta Starodubova.


Oxidative Medicine and Cellular Longevity | 2016

Oxidative Stress during HIV Infection: Mechanisms and Consequences

A. V. Ivanov; Vladimir T. Valuev-Elliston; Olga N. Ivanova; S. N. Kochetkov; Elizaveta Starodubova; Birke Bartosch; Maria G. Isaguliants

It is generally acknowledged that reactive oxygen species (ROS) play crucial roles in a variety of natural processes in cells. If increased to levels which cannot be neutralized by the defense mechanisms, they damage biological molecules, alter their functions, and also act as signaling molecules thus generating a spectrum of pathologies. In this review, we summarize current data on oxidative stress markers associated with human immunodeficiency virus type-1 (HIV-1) infection, analyze mechanisms by which this virus triggers massive ROS production, and describe the status of various defense mechanisms of the infected host cell. In addition, we have scrutinized scarce data on the effect of ROS on HIV-1 replication. Finally, we present current state of knowledge on the redox alterations as crucial factors of HIV-1 pathogenicity, such as neurotoxicity and dementia, exhaustion of CD4+/CD8+ T-cells, predisposition to lung infections, and certain side effects of the antiretroviral therapy, and compare them to the pathologies associated with the nitrosative stress.


Genetic Vaccines and Therapy | 2009

Enhancement of the expression of HCV core gene does not enhance core-specific immune response in DNA immunization: advantages of the heterologous DNA prime, protein boost immunization regimen

Ekaterina Alekseeva; Irina Sominskaya; Dace Skrastina; Irina Egorova; Elizaveta Starodubova; Eriks Kushners; Marija Mihailova; Natalia Petrakova; Ruta Bruvere; Tatyana Kozlovskaya; Maria G. Isaguliants; Paul Pumpens

BackgroundHepatitis C core protein is an attractive target for HCV vaccine aimed to exterminate HCV infected cells. However, although highly immunogenic in natural infection, core appears to have low immunogenicity in experimental settings. We aimed to design an HCV vaccine prototype based on core, and devise immunization regimens that would lead to potent anti-core immune responses which circumvent the immunogenicity limitations earlier observed.MethodsPlasmids encoding core with no translation initiation signal (pCMVcore); with Kozak sequence (pCMVcoreKozak); and with HCV IRES (pCMVcoreIRES) were designed and expressed in a variety of eukaryotic cells. Polyproteins corresponding to HCV 1b amino acids (aa) 1–98 and 1–173 were expressed in E. coli. C57BL/6 mice were immunized with four 25-μg doses of pCMVcoreKozak, or pCMV (I). BALB/c mice were immunized with 100 μg of either pCMVcore, or pCMVcoreKozak, or pCMVcoreIRES, or empty pCMV (II). Lastly, BALB/c mice were immunized with 20 μg of core aa 1–98 in prime and boost, or with 100 μg of pCMVcoreKozak in prime and 20 μg of core aa 1–98 in boost (III). Antibody response, [3H]-T-incorporation, and cytokine secretion by core/core peptide-stimulated splenocytes were assessed after each immunization.ResultsPlasmids differed in core-expression capacity: mouse fibroblasts transfected with pCMVcore, pCMVcoreIRES and pCMVcoreKozak expressed 0.22 ± 0.18, 0.83 ± 0.5, and 13 ± 5 ng core per cell, respectively. Single immunization with highly expressing pCMVcoreKozak induced specific IFN-γ and IL-2, and weak antibody response. Single immunization with plasmids directing low levels of core expression induced similar levels of cytokines, strong T-cell proliferation (pCMVcoreIRES), and antibodies in titer 103(pCMVcore). Boosting with pCMVcoreKozak induced low antibody response, core-specific T-cell proliferation and IFN-γ secretion that subsided after the 3rd plasmid injection. The latter also led to a decrease in specific IL-2 secretion. The best was the heterologous pCMVcoreKozak prime/protein boost regimen that generated mixed Th1/Th2-cellular response with core-specific antibodies in titer ≥ 3 × 103.ConclusionThus, administration of highly expressed HCV core gene, as one large dose or repeated injections of smaller doses, may suppress core-specific immune response. Instead, the latter is induced by a heterologous DNA prime/protein boost regimen that circumvents the negative effects of intracellular core expression.


Human Vaccines & Immunotherapeutics | 2013

Oxidative stress induced by HIV-1 reverse transcriptase modulates the enzyme’s performance in gene immunization

Maria G. Isaguliants; Olga A. Smirnova; A. V. Ivanov; Athina Kilpeläinen; Yulia Kuzmenko; Stefan Petkov; Anastasia Latanova; Olga Krotova; Gunnel Engström; Vadim Karpov; S. N. Kochetkov; Britta Wahren; Elizaveta Starodubova

HIV-1 infection induces chronic oxidative stress. The resultant neurotoxicity has been associated with Tat protein. Here, we for the first time describe the induction of oxidative stress by another HIV-1 protein, reverse transcriptase (RT). Expression of HIV-1 RT in human embryonic kidney cells generated potent production of the reactive oxygen species (ROS), detected by the fluorescence-based probes. Quantitative RT-PCR demonstrated that expression of RT in HEK293 cells induced a 10- to 15-fold increased transcription of the phase II detoxifying enzymes human NAD(P)H:quinone oxidoreductase (Nqo1) and heme oxygenase 1 (HO-1), indicating the induction of oxidative stress response. The capacity to induce oxidative stress and stress response appeared to be an intrinsic property of a vast variety of RTs: enzymatically active and inactivated, bearing mutations of drug resistance, following different routes of processing and presentation, expressed from viral or synthetic expression-optimized genes. The total ROS production induced by RT genes of the viral origin was found to be lower than that induced by the synthetic/expression-optimized or chimeric RT genes. However, the viral RT genes induced higher levels of ROS production and higher levels of HO-1 mRNA than the synthetic genes per unit of protein in the expressing cell. The capacity of RT genes to induce the oxidative stress and stress response was then correlated with their immunogenic performance. For this, RT genes were administered into BALB/c mice by intradermal injections followed by electroporation. Splenocytes of immunized mice were stimulated with the RT-derived and control antigens and antigen-specific proliferation was assessed by IFN-γ/IL-2 Fluorospot. RT variants generating high total ROS levels induced significantly stronger IFN-γ responses than the variants inducing lower total ROS, while high levels of ROS normalized per unit of protein in expressing cell were associated with a weak IFN-γ response. Poor gene immunogenicity was also associated with a high (per unit of protein) transcription of antioxidant response element (ARE) dependent phase II detoxifying enzyme genes, specifically HO-1. Thus, we have revealed a direct link between the propensity of the microbial proteins to induce oxidative stress and their immunogenicity.


Vaccine | 2008

HIV-1 reverse transcriptase artificially targeted for proteasomal degradation induces a mixed Th1/Th2-type immune response

Elizaveta Starodubova; Andreas Boberg; Marina Litvina; Alexey V. Morozov; Natalia Petrakova; Andrey V. Timofeev; Oleg Latyshev; V. L. Tunitskaya; Britta Wahren; Maria G. Isaguliants; Vadim Karpov

Targeting of a DNA vaccine encoded protein for degradation via the proteasome is attempted since it may enhance the immunogenicity of the vaccine. We have fused HIV-1 reverse transcriptase (RT) to mouse ornithine decarboxylase (ODC), a protein rapidly degraded by proteasome in an ubiquitine-independent fashion, to enhance the introduction of RT into the MHC class I pathway. We also designed a fusion of RT with two short signals from the C-terminus of ODC (ODCsig) representing a minimal proteasome-targeting moiety of ODC (PEST signal). Fusion to ODC or ODC signal domain led to a marked enhancement of RT degradation. Plasmids encoding RT-ODC and RT-ODCsig chimera were used to immunize BALB/c mice. The administration of the plasmids was not associated with autoimmune disease. Moreover, mice receiving RT-ODCsig gene mounted a mixed Th1/Th2 response characterized by the in vitro secretion of IFN-gamma, IL-2, TNF-alpha, IL-4, and IL-10 upon stimulation of splenocytes with RT protein or RT derived peptides. Serum titers of 10(2) to 10(3) were observed in more than 50% of animals in that group, whereas fewer animals mounted an anti-RT response in the RT-ODC gene immunized group. Chimeras of the type described here can, therefore, be used in vaccinations aiming to induce HIV-1 RT-specific immune response.


AIDS Research and Human Retroviruses | 2004

Mutations Conferring Drug Resistance Affect Eukaryotic Expression of HIV Type 1 Reverse Transcriptase

Maria G. Isaguliants; Sergey Belikov; Elizaveta Starodubova; Rinat Gizatullin; Erik Rollman; Bartek Zuber; Anne Kjerrström Zuber; Olga I. Andreeva Grishchenko; Ann-Sofie Rytting; Clas Källander; Britta Wahren

Mutations in reverse transcriptase (RT) confer high levels of HIV resistance to drugs. However, while conferring drug resistance, they can lower viral replication capacity (fitness). The molecular mechanisms behind remain largely unknown. The aim of the study was to characterize the effect of drug-resistance mutations on HIV RT expression. Genes encoding AZT-resistant RTs with single or combined mutations D67N, K70R, T215F, and K219Q, and RTs derived from drug-resistant HIV-1 strains were designed and expressed in a variety of eukaryotic cells. Expression in transiently transfected cells was assessed by Western blotting and immunofluorescent staining with RT-specific antibodies. To compare the levels of expression, mutated RT genes were microinjected into the nucleus of the oocytes of Xenopus laevis. Expression of RT was quantified by sandwich ELISA. Relative stability of RTs was assessed by pulse-chase experiments. Xenopus oocytes microinjected with the genes expressed 2-50 pg of RT mutants per cell. The level of RT expression decreased with accumulation of drug-resistance mutations. Pulse-chase experiments demonstrated that poor expression of DR-RTs was due to proteolytic instability. Instability could be attributed to additional cleavage sites predicted to appear in the vicinity of resistance mutations. Accumulation of drug-resistance mutations appears to affect the level of eukaryotic expression of HIV-1 RT by inducing proteolytic instability. Low RT levels might be one of the determinants of impaired replication fitness of drug-resistant HIV-1 strains.


Human Vaccines & Immunotherapeutics | 2013

Evaluation of immunogen delivery by DNA immunization using non-invasive bioluminescence imaging

Stefan Petkov; Frank Heuts; Olga Krotova; Athina Kilpeläinen; Gunnel Engström; Elizaveta Starodubova; Maria G. Isaguliants

The efficacy of DNA vaccines is highly dependent on the methods used for their delivery and the choice of delivery sites/targets for gene injection, pointing at the necessity of a strict control over the gene delivery process. Here, we have investigated the effect of the injection site on gene expression and immunogenicity in BALB/c mice, using as a model a weak gene immunogen, DNA encoding firefly luciferase (Luc) delivered by superficial or deep injection with subsequent electroporation (EP). Immunization was assessed by monitoring the in vivo expression of luciferase by 2D- and 3D-bioluminescence imaging (BLI) and by the end-point immunoassays. Anti-Luc antibodies were assessed by ELISA, and T-cell response by IFN-γ and IL-2 FluoroSpot in which mouse splenocytes were stimulated with Luc or a peptide representing its immunodominant CD8+ T-cell epitope GFQSMYTFV. Monitoring of immunization by BLI identified EP parameters supporting the highest Luc gene uptake and expression. Superficial injection of Luc DNA followed by optimal EP led to a low level Luc expression in the mouse skin, and triggered a CD8+ T-cell response characterized by the peptide-specific secretion of IFN-γ and IL-2, but no specific antibodies. Intramuscular gene delivery resulted in a several-fold higher Luc expression and anti-Luc antibody, but induced low IL-2 and virtually no specific IFN-γ. Photon flux from the sites of Luc gene injection was inversely proportional to the immune response against GFQSMYTFV (p < 0.05). Thus, BLI permitted to control the accuracy of gene delivery and transfection with respect to the injection site as well as the parameters of electroporation. Further, it confirmed the critical role of the site of DNA administration for the type and magnitude of the vaccine-specific immune response. This argues for the use of luminescent reporters in the preclinical gene vaccine tests to monitor both gene delivery and the immune response development in live animals.


Vaccine | 2010

Potent cross-reactive immune response against the wild-type and drug-resistant forms of HIV reverse transcriptase after the chimeric gene immunization.

Elizaveta Starodubova; Andreas Boberg; A. V. Ivanov; Oleg Latyshev; Natalia Petrakova; Yulia Kuzmenko; Marina Litvina; Alexander Chernousov; S. N. Kochetkov; Vadim Karpov; Britta Wahren; Maria G. Isaguliants

HIV reverse transcriptase (RT) can be considered as a target and an instrument of immunotherapy aimed at limiting the emergence and spread of drug-resistant HIV. The chimeric genes coding for the wild-type and multi-drug-resistant RT (RT1.14) fused to lysosome-associated membrane protein 1 (LAMP-1) were injected intramuscularly into BALB/c mice. The immune response was assessed by ELISpot, cytokine ELISA intracellular IFN-gamma staining, and antibody ELISA. The genes for RT- and RT1.14-LAMP fusions (RT-LAMP and RT1.14-LAMP) were immunogenic generating a mixed Th1/Th2-profile of immune response, while the wild-type RT gene induced only weak immune response. Specific secretion of Th1-cytokines increased with increasing level of RT modification: RT<RT1.14 approximately RT-LAMP<RT1.14-LAMP. LAMP gene fusions generated a cross-reactive T-cell response against epitopes harboring drug-resistance mutations and their wild-type variants. Gene immunization induced specific IgG (10(3)), and transient serum IgA (10(2)). Low immunogenicity of the parental RT may be explained by tolerance to the enzyme that is a common endogenous retroviral antigen. Potent immune recognition of RT after immunization with chimeric RT genes indicates that this tolerance could be overcome. Immunization with mutant HIV genes may represent an immunotherapeutical supplement to antiretroviral treatment preventing the emergence of drug resistance.


Molecular Imaging | 2012

Cellular Immunogenicity of Novel Gene Immunogens in Mice Monitored by In Vivo Imaging

Elizaveta Starodubova; Olga Krotova; David Hallengärd; Yulia Kuzmenko; Gunnel Engström; Diana Legzdina; Oleg Latyshev; Olesja V. Eliseeva; Anna Karin Maltais; V. L. Tunitskaya; Vadim Karpov; Andreas Bråve; Maria G. Isaguliants

The efficient cell-mediated immune response clears cells expressing deoxyribonucleic acid (DNA) immunogens, but there are no methods to monitor this in vivo. We hypothesized that immune-mediated clearance can be monitored in vivo if DNA immunogens are coexpressed with reporter(s). To test this, we designed genes encoding human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) fused via its N- or C-terminus to 30–amino acid-long Gly-Ala-repeat of Epstein-Barr virus nuclear antigen 1 or via the N-terminus to the transport signal of invariant chain/Ii or inserted between the cytoplasmic and luminal domains of lysosome-associated membrane protein I (LAMP). DNA immunogens mixed with luciferase gene were injected into BALB/c mice with subsequent electroporation. Reporter expression seen as luminescence was monitored by in vivo imaging. When luminescence faded, mice were sacrificed, and their splenocytes were stimulated with RT-derived antigens. Fading of luminescence correlated with the RT-specific secretion of interferon-γ and interleukin-2. Both immune and in vivo imaging techniques concordantly demonstrated an enhanced immunogenicity of RT-LAMP and of the N-terminal Gly-Ala-RT fusion genes. In vivo imaging performed as an animal-sparing method to estimate the overall performance of DNA immunogens, predicting it early in the experiment. So far, in vivo imaging cannot be a substitute for conventional immune assays, but it is supplementary to them. Further experiments are needed to identify which arms of cellular immune response in vivo imaging monitors best.


PLOS ONE | 2013

Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells.

Olga Krotova; Elizaveta Starodubova; Stefan Petkov; Linda Kostic; Julia Agapkina; David Hallengärd; Alecia Viklund; Oleg Latyshev; Eva Gelius; Tomas Dillenbeck; Vadim Karpov; Marina Gottikh; Igor M. Belyakov; Vladimir V. Lukashov; Maria G. Isaguliants

Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN) of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V) with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids) were highly expressed in human and murine cell lines (>0.7 ng/cell). Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus-infected cells via both MHC class I and II pathways.


Intervirology | 2016

Nonstructural Protein 1 of Tick-Borne Encephalitis Virus Induces Oxidative Stress and Activates Antioxidant Defense by the Nrf2/ARE Pathway.

Yulia Kuzmenko; Olga A. Smirnova; A. V. Ivanov; Elizaveta Starodubova; Vadim Karpov

Background: Infection with tick-borne encephalitis virus (TBEV) causes pathological changes in the central nervous system. However, the possible redox alterations in the infected cells that can contribute to the virus pathogenicity remain unknown. Objective: In the current study we explored the ability of TBEV nonstructural protein 1 (NS1) to induce oxidative stress and activate antioxidant defense via the nuclear factor (erythroid-derived-2)-like 2/antioxidant response element (Nrf2/ARE) pathway. Methods: HEK 293T cells were transfected with plasmid encoding NS1 protein, and the production of reactive oxygen species (ROS) was measured using oxidation-sensitive dyes, the activation of the ARE promoter was estimated using a reporter plasmid, and the expression of phase II detoxifying enzymes was quantified by measuring their mRNA levels using RT-qPCR. Results: A high level of ROS production was detected in cells transfected with NS1-expressing plasmid. In addition, this protein activated the promoter with an ARE and upregulated the transcription of ARE-dependent genes that encode phase II enzymes. Conclusion: TBEV NS1 protein both triggers ROS production and activates a defense Nrf2/ARE pathway. These data suggest that a role of redox-mediated processes in TBEV-induced damage of the central nervous system should also be explored. These data can contribute to a better understanding of TBEV pathogenicity, further improvement of TBE treatment, and the development of vaccine candidates against this infection.

Collaboration


Dive into the Elizaveta Starodubova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vadim Karpov

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

A. V. Ivanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Oleg Latyshev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Olga Krotova

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Yulia Kuzmenko

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anastasia Latanova

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

S. N. Kochetkov

Engelhardt Institute of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge