Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elizaveta V. Benevolenskaya is active.

Publication


Featured researches published by Elizaveta V. Benevolenskaya.


Molecular Cell | 2008

Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation.

Nuria Lopez-Bigas; Tomasz A. Kisiel; Dannielle DeWaal; Katie B. Holmes; Tom L. Volkert; Sumeet Gupta; Jennifer Love; Heather L. Murray; Richard A. Young; Elizaveta V. Benevolenskaya

Retinoblastoma protein (pRB) mediates cell-cycle withdrawal and differentiation by interacting with a variety of proteins. RB-Binding Protein 2 (RBP2) has been shown to be a key effector. We sought to determine transcriptional regulation by RBP2 genome-wide by using location analysis and gene expression profiling experiments. We describe that RBP2 shows high correlation with the presence of H3K4me3 and its target genes are separated into two functionally distinct classes: differentiation-independent and differentiation-dependent genes. The former class is enriched by genes that encode mitochondrial proteins, while the latter is represented by cell-cycle genes. We demonstrate the role of RBP2 in mitochondrial biogenesis, which involves regulation of H3K4me3-modified nucleosomes. Analysis of expression changes upon RBP2 depletion depicted genes with a signature of differentiation control, analogous to the changes seen upon reintroduction of pRB. We conclude that, during differentiation, RBP2 exerts inhibitory effects on multiple genes through direct interaction with their promoters.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Loss of the retinoblastoma binding protein 2 (RBP2) histone demethylase suppresses tumorigenesis in mice lacking Rb1 or Men1

Wenchu Lin; Jian Cao; Jiayun Liu; Michael L. Beshiri; Yuko Fujiwara; Joshua M. Francis; Andrew D. Cherniack; Christoph Geisen; Lauren P. Blair; Mike R. Zou; Xiaohua Shen; Dan Kawamori; Zongzhi Liu; Chiara Grisanzio; Hideo Watanabe; Yoji Andrew Minamishima; Qing Zhang; Rohit N. Kulkarni; Sabina Signoretti; Scott J. Rodig; Roderick T. Bronson; Stuart H. Orkin; David Tuck; Elizaveta V. Benevolenskaya; Matthew Meyerson; William G. Kaelin; Qin Yan

Aberrations in epigenetic processes, such as histone methylation, can cause cancer. Retinoblastoma binding protein 2 (RBP2; also called JARID1A or KDM5A) can demethylate tri- and dimethylated lysine 4 in histone H3, which are epigenetic marks for transcriptionally active chromatin, whereas the multiple endocrine neoplasia type 1 (MEN1) tumor suppressor promotes H3K4 methylation. Previous studies suggested that inhibition of RBP2 contributed to tumor suppression by the retinoblastoma protein (pRB). Here, we show that genetic ablation of Rbp2 decreases tumor formation and prolongs survival in Rb1+/− mice and Men1-defective mice. These studies link RBP2 histone demethylase activity to tumorigenesis and nominate RBP2 as a potential target for cancer therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation

Michael L. Beshiri; Katherine B. Holmes; William F. Richter; Samuel Hess; Abul B.M.M.K. Islam; Qin Yan; Lydia Plante; Larisa Litovchick; Nicolas Gévry; Nuria Lopez-Bigas; William G. Kaelin; Elizaveta V. Benevolenskaya

Epigenetic regulation underlies the robust changes in gene expression that occur during development. How precisely epigenetic enzymes contribute to development and differentiation processes is largely unclear. Here we show that one of the enzymes that removes the activating epigenetic mark of trimethylated lysine 4 on histone H3, lysine (K)-specific demethylase 5A (KDM5A), reinforces the effects of the retinoblastoma (RB) family of transcriptional repressors on differentiation. Global location analysis showed that KDM5A cooccupies a substantial portion of target genes with the E2F4 transcription factor. During ES cell differentiation, knockout of KDM5A resulted in derepression of multiple genomic loci that are targets of KDM5A, denoting a direct regulatory function. In terminally differentiated cells, common KDM5A and E2F4 gene targets were bound by the pRB-related protein p130, a DREAM complex component. KDM5A was recruited to the transcription start site regions independently of E2F4; however, it cooperated with E2F4 to promote a state of deepened repression at cell cycle genes during differentiation. These findings reveal a critical role of H3K4 demethylation by KDM5A in the transcriptional silencing of genes that are suppressed by RB family members in differentiated cells.


PLOS Genetics | 2010

Combined Inactivation of pRB and Hippo Pathways Induces Dedifferentiation in the Drosophila Retina

Brandon N. Nicolay; Battuya Bayarmagnai; Nam Sung Moon; Elizaveta V. Benevolenskaya; Maxim V. Frolov

Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.


Cell Cycle | 2011

Selective targeting of histone methylation

Abul B.M.M.K. Islam; William F. Richter; Nuria Lopez-Bigas; Elizaveta V. Benevolenskaya

Histones are post-translationally modified by multiple histone-modifying enzymes, which in turn influences gene expression. Much of the work in the field to date has focused on genetic, biochemical and structural characterization of these enzymes. The most recent genome-wide methods provide insights into specific recruitment of histone-modifying enzymes in vivo and, therefore, onto mechanisms of establishing a differential expression pattern. Here we focus on the recruitment mechanisms of the enzymes involved in the placement of two contrasting histone marks, histone H3 lysine 4 (H3K4) methylation and histone H3 lysine 27 (H3K27) methylation. We describe distribution of their binding sites and show that recruitment of different histone-modifying proteins can be coordinated, opposed, or alternating. Specifically, genomic sites of the H3K4 histone demethylase KDM5A become accessible to its homolog KDM5B in cells with a lowered KDM5A level. The currently available data on recruitment of H3K4/H3K27 modifying enzymes suggests that the formed protein complexes are targeted in a sequential and temporal manner, but that additional, still unknown, interactions contribute to targeting specificity.


Genes & Development | 2015

Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells

Renáta Váraljai; Abul B.M.M.K. Islam; Michael L. Beshiri; Jalees Rehman; Nuria Lopez-Bigas; Elizaveta V. Benevolenskaya

The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRBs role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype.


Molecular and Cellular Biology | 2013

Expression of polycomb targets predicts breast cancer prognosis.

Alba Jene-Sanz; Renáta Váraljai; Alexandra V. Vilkova; Galina Khramtsova; Andrey Khramtsov; Olufunmilayo I. Olopade; Nuria Lopez-Bigas; Elizaveta V. Benevolenskaya

ABSTRACT Global changes in the epigenome are increasingly being appreciated as key events in cancer progression. The pathogenic role of enhancer of zeste homolog 2 (EZH2) has been connected to its histone 3 lysine 27 (H3K27) methyltransferase activity and gene repression; however, little is known about relationship of changes in expression of EZH2 target genes to cancer characteristics and patient prognosis. Here we show that through expression analysis of genomic regions with H3K27 trimethylation (H3K27me3) and EZH2 binding, breast cancer patients can be stratified into good and poor prognostic groups independent of known cancer gene signatures. The EZH2-bound regions were downregulated in tumors characterized by aggressive behavior, high expression of cell cycle genes, and low expression of developmental and cell adhesion genes. Depletion of EZH2 in breast cancer cells significantly increased expression of the top altered genes, decreased proliferation, and improved cell adhesion, indicating a critical role played by EZH2 in determining the cancer phenotype.


Developmental Cell | 2013

Loss of dE2F Compromises Mitochondrial Function

Aaron M. Ambrus; Abul B.M.M.K. Islam; Katherine B. Holmes; Nam Sung Moon; Nuria Lopez-Bigas; Elizaveta V. Benevolenskaya; Maxim V. Frolov

E2F/DP transcription factors regulate cell proliferation and apoptosis. Here, we investigated the mechanism of the resistance of Drosophila dDP mutants to irradiation-induced apoptosis. Contrary to the prevailing view, this is not due to an inability to induce the apoptotic transcriptional program, because we show that this program is induced; rather, this is due to a mitochondrial dysfunction of dDP mutants. We attribute this defect to E2F/DP-dependent control of expression of mitochondria-associated genes. Genetic attenuation of several of these E2F/DP targets mimics the dDP mutant mitochondrial phenotype and protects against irradiation-induced apoptosis. Significantly, the role of E2F/DP in the regulation of mitochondrial function is conserved between flies and humans. Thus, our results uncover a role of E2F/DP in the regulation of mitochondrial function and demonstrate that this aspect of E2F regulation is critical for the normal induction of apoptosis in response to irradiation.


Cancer Research | 2015

Emerging Links between E2F Control and Mitochondrial Function

Elizaveta V. Benevolenskaya; Maxim V. Frolov

The family of E2F transcription factors is the key downstream target of the retinoblastoma tumor suppressor protein (pRB), which is frequently inactivated in human cancer. E2F is best known for its role in cell-cycle regulation and triggering apoptosis. However, E2F binds to thousands of genes and, thus, could directly influence a number of biologic processes. Given the plethora of potential E2F targets, the major challenge in the field is to identify specific processes in which E2F plays a functional role and the contexts in which a particular subset of E2F targets dictates a biologic outcome. Recent studies implicated E2F in regulation of expression of mitochondria-associated genes. The loss of such regulation results in severe mitochondrial defects. The consequences become evident during irradiation-induced apoptosis, where E2F-deficient cells are insensitive to cell death despite induction of canonical apoptotic genes. Thus, this novel function of E2F may have a major impact on cell viability, and it is independent of induction of apoptotic genes. Here, we discuss the implications of these findings in cancer biology.


PLOS ONE | 2011

Co-Regulation of Histone-Modifying Enzymes in Cancer

Abul B.M.M.K. Islam; William F. Richter; Laura A. Jacobs; Nuria Lopez-Bigas; Elizaveta V. Benevolenskaya

Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs) and histone methyltransferases (HMTs), their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.

Collaboration


Dive into the Elizaveta V. Benevolenskaya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renáta Váraljai

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Michael L. Beshiri

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

William F. Richter

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxim V. Frolov

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Andrei L. Gartel

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dannielle DeWaal

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge